崇仁县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
崇仁县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
崇仁县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
崇仁县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
崇仁县三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

崇仁县三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知命题p:存在x00,使21,则p是( )A对任意x0,都有2x1B对任意x0,都有2x1C存在x00,使21D存在x00,使212 已知集合,且使中元素和中的元素对应,则的值分别为( )A B C D3 已知双曲线C 的一个焦点与抛物线y2=8x的焦点相同,且双曲线C过点P(2,0),则双曲线C的渐近线方程是( )Ay=xBy=Cxy=2xDy=x4 记集合和集合表示的平面区域分别为1,2, 若在区域1内任取一点M(x,y),则点M落在区域2内的概率为( ) A B C D【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力5 如图所示,在三棱锥的六条棱所在的直线中,异面直线共有( )111A2对 B3对 C4对 D6对6 用反证法证明命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”则假设的内容是( )Aa,b都能被5整除Ba,b都不能被5整除Ca,b不能被5整除Da,b有1个不能被5整除7 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.238 设k=1,2,3,4,5,则(x+2)5的展开式中xk的系数不可能是( )A10B40C50D809 已知集合A=x|x0,且AB=B,则集合B可能是( )Ax|x0Bx|x1C1,0,1DR10已知是球的球面上两点,为该球面上的动点,若三棱锥体积的最大值为,则球的体积为( )ABCD【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力11函数在区间上的最大值为5,最小值为1,则的取值范围是( )A B C D12在ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinC,a2c2=3bc,则A等于( )A30B60C120D150二、填空题13调查某公司的四名推销员,其工作年限与年推销金额如表 推销员编号1234工作年限x/(年)351014年推销金额y/(万元)23712由表中数据算出线性回归方程为=x+若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元14函数的单调递增区间是15【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=,若函数y=f(f(x)a)1有三个零点,则a的取值范围是_16已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为2,则直线的方程为_.17要使关于的不等式恰好只有一个解,则_.【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.18函数在点处的切线的斜率是 .三、解答题19已知函数f(x)=(log2x2)(log4x)(1)当x2,4时,求该函数的值域;(2)若f(x)mlog2x对于x4,16恒成立,求m的取值范围20如图,在三棱柱ABCA1B1C1中,底面ABC是边长为2的等边三角形,D为AB中点(1)求证:BC1平面A1CD;(2)若四边形BCC1B1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值21函数f(x)是R上的奇函数,且当x0时,函数的解析式为f(x)=1(1)用定义证明f(x)在(0,+)上是减函数;(2)求函数f(x)的解析式22(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)写出曲线的参数方程,直线的普通方程;(2)求曲线上任意一点到直线的距离的最大值.23已知p:,q:x2(a2+1)x+a20,若p是q的必要不充分条件,求实数a的取值范围24(本小题满分10分)选修4-5:不等式选讲已知函数(1)若不等式的解集为,求实数的值;(2)若不等式,对任意的实数恒成立,求实数的最小值崇仁县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:命题p:存在x00,使21为特称命题,p为全称命题,即对任意x0,都有2x1故选:A2 【答案】D【解析】试题分析:分析题意可知:对应法则为,则应有(1)或(2),由于,所以(1)式无解,解(2)式得:。故选D。考点:映射。3 【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(2,0),可得a=2,所以b=2双曲线C的渐近线方程是y=x故选:A【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查4 【答案】A【解析】画出可行域,如图所示,1表示以原点为圆心, 1为半径的圆及其内部,2表示及其内部,由几何概型得点M落在区域2内的概率为,故选A.5 【答案】B【解析】试题分析:三棱锥中,则与、与、与都是异面直线,所以共有三对,故选B考点:异面直线的判定6 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”故应选B【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧7 【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程8 【答案】 C【解析】二项式定理【专题】计算题【分析】利用二项展开式的通项公式求出展开式的xk的系数,将k的值代入求出各种情况的系数【解答】解:(x+2)5的展开式中xk的系数为C5k25k当k1时,C5k25k=C5124=80,当k=2时,C5k25k=C5223=80,当k=3时,C5k25k=C5322=40,当k=4时,C5k25k=C542=10,当k=5时,C5k25k=C55=1,故展开式中xk的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数9 【答案】A【解析】解:由A=x|x0,且AB=B,所以BAA、x|x0=x|x0=A,故本选项正确;B、x|x1,xR=(,10,+),故本选项错误;C、若B=1,0,1,则AB=0,1B,故本选项错误;D、给出的集合是R,不合题意,故本选项错误故选:A【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题10【答案】D【解析】当平面平面时,三棱锥的体积最大,且此时为球的半径设球的半径为,则由题意,得,解得,所以球的体积为,故选D11【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知需从开始,要取得最大值为,由图可知的右端点为,故的取值范围是.考点:二次函数图象与性质12【答案】C【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2c2=3bc,可得a2=7c2,所以cosA=,0A180,A=120故选:C【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查二、填空题13【答案】 【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6,代入回归方程,可得a=,所以=x,当x=8时,y=,估计他的年推销金额为万元故答案为:【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题14【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)15【答案】【解析】当x0时,由f(x)1=0得x2+2x+1=1,得x=2或x=0,当x0时,由f(x)1=0得,得x=0,由,y=f(f(x)a)1=0得f(x)a=0或f(x)a=2,即f(x)=a,f(x)=a2,作出函数f(x)的图象如图:y=1(x0),y=,当x(0,1)时,y0,函数是增函数,x(1,+)时,y0,函数是减函数,x=1时,函数取得最大值:,当1a2时,即a(3,3+)时,y=f(f(x)a)1有4个零点,当a2=1+时,即a=3+时则y=f(f(x)a)1有三个零点,当a3+时,y=f(f(x)a)1有1个零点当a=1+时,则y=f(f(x)a)1有三个零点,当时,即a(1+,3)时,y=f(f(x)a)1有三个零点综上a,函数有3个零点故答案为:点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解16【答案】【解析】解析: 设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即.17【答案】. 【解析】分析题意得,问题等价于只有一解,即只有一解,故填:.18【答案】【解析】试题分析:,则,故答案为. 考点:利用导数求曲线上某点切线斜率.三、解答题19【答案】 【解析】解:(1)f(x)=(log2x2)(log4x)=(log2x)2log2x+1,2x4令t=log2x,则y=t2t+1=(t)2,2x4,1t2当t=时,ymin=,当t=1,或t=2时,ymax=0函数的值域是,0(2)令t=log2x,得t2t+1mt对于2t4恒成立mt+对于t2,4恒成立,设g(t)=t+,t2,4,g(t)=t+=(t+),g(t)=t+在2,4上为增函数,当t=2时,g(t)min=g(2)=0,m020【答案】 【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,D为AB的中点,DOBC1,BC1平面A1CD,DO平面A1CD,BC1平面A1CD 解:底面ABC是边长为2等边三角形,D为AB的中点,四边形BCC1B1是正方形,且A1D=,CDAB,CD=,AD=1,AD2+AA12=A1D2,AA1AB,CDDA1,又DA1AB=D,CD平面ABB1A1,BB1平面ABB1A1,BB1CD,矩形BCC1B1,BB1BC,BCCD=CBB1平面ABC,底面ABC是等边三角形,三棱柱ABCA1B1C1是正三棱柱以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,B(2,0,0),A(1,0,),D(,0,),A1(1,2,),=(,2,),平面CBB1C1的法向量=(0,0,1),设直线A1D与平面CBB1C1所成角为,则sin=直线A1D与平面CBB1C1所成角的正弦值为21【答案】 【解析】(1)证明:设x2x10,f(x1)f(x2)=(1)(1)=,由题设可得x2x10,且x2x10,f(x1)f(x2)0,即f(x1)f(x2),故f(x)在(0,+)上是减函数(2)当x0时,x0,f(x)=1=f(x),f(x)=+1又f(0)=0,故函数f(x)的解析式为f(x)=22【答案】(1)参数方程为,;(2).【解析】试题分析:(1)先将曲线的极坐标方程转化为直角坐标系下的方程,可得,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.试题解析:(1)曲线的普通方程为,所以参数方程为,直线的普通方程为.(2)曲线上任意一点到直线的距离为,所以曲线上任意一点到直线的距离的最大值为.考点:1.极坐标方程;2.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论