




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
松北区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( )A3,6,9,12,15,18B4,8,12,16,20,24C2,7,12,17,22,27D6,10,14,18,22,262 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )ABCD3 在ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,A=60,则满足条件的三角形个数为( )A0B1C2D以上都不对4 下列语句所表示的事件不具有相关关系的是( )A瑞雪兆丰年B名师出高徒C吸烟有害健康D喜鹊叫喜5 已知函数f(x)=ax1+logax在区间1,2上的最大值和最小值之和为a,则实数a为( )ABC2D46 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字09中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有( )AabBabCa=bDa,b的大小与m,n的值有关7 已知抛物线的焦点为,点是抛物线上的动点,则当的值最小时,的面积为( )A. B.C. D. 【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.8 已知平面向量与的夹角为,且,则( )A B C D 9 已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D110下列说法中正确的是( )A三点确定一个平面B两条直线确定一个平面C两两相交的三条直线一定在同一平面内D过同一点的三条直线不一定在同一平面内11已知集合A=0,1,2,则集合B=xy|xA,yA的元素个数为( )A4B5C6D912已知点P(1,),则它的极坐标是( )ABCD二、填空题13已知函数f(x)=x3ax2+3x在x1,+)上是增函数,求实数a的取值范围14曲线y=x2和直线x=0,x=1,y= 所围成的图形的面积为15已知实数,满足,目标函数的最大值为4,则_【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力16不等式的解为17若函数f(x)=,则f(7)+f(log36)=18设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为三、解答题19已知a,b,c分别为ABC三个内角A,B,C的对边,且满足2bcosC=2ac()求B; ()若ABC的面积为,b=2求a,c的值20如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0)(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由 21在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=a(1)求角C的大小;(2)若c=2,a2+b2=6,求ABC的面积22【淮安市淮海中学2018届高三上第一次调研】已知函数.(1)当时,求满足的的取值;(2)若函数是定义在上的奇函数存在,不等式有解,求的取值范围;若函数满足,若对任意,不等式恒成立,求实数的最大值.23(本小题满分13分)已知函数,()讨论的单调性;()证明:当时,有唯一的零点,且24设函数f(x)=1+(1+a)xx2x3,其中a0()讨论f(x)在其定义域上的单调性;()当x时,求f(x)取得最大值和最小值时的x的值松北区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为306=5,只有选项C中编号间隔为5,故选:C2 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确故选:A【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键3 【答案】B【解析】解:a=3,A=60,由正弦定理可得:sinB=1,B=90,即满足条件的三角形个数为1个故选:B【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题4 【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题5 【答案】A【解析】解:分两类讨论,过程如下:当a1时,函数y=ax1 和y=logax在1,2上都是增函数,f(x)=ax1+logax在1,2上递增,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,舍去;当0a1时,函数y=ax1 和y=logax在1,2上都是减函数,f(x)=ax1+logax在1,2上递减,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,符合题意;故选A6 【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b故选:C7 【答案】B 【解析】设,则.又设,则,所以,当且仅当,即时,等号成立,此时点,的面积为,故选B.8 【答案】C考点:平面向量数量积的运算9 【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论10【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,两两相交且不共点的三条直线确定一个平面,当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确故选:D11【答案】B【解析】解:x=0时,y=0,1,2,xy=0,1,2;x=1时,y=0,1,2,xy=1,0,1;x=2时,y=0,1,2,xy=2,1,0;B=0,1,2,1,2,共5个元素故选:B12【答案】C【解析】解:点P的直角坐标为,=2再由1=cos, =sin,可得,结合所给的选项,可取=,即点P的极坐标为 (2,),故选 C【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题二、填空题13【答案】(,3 【解析】解:f(x)=3x22ax+3,f(x)在1,+)上是增函数,f(x)在1,+)上恒有f(x)0,即3x22ax+30在1,+)上恒成立则必有1且f(1)=2a+60,a3;实数a的取值范围是(,314【答案】 【解析】解:曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)曲线y=x2和直线x=0,x=1,y= 所围成的图形的面积为S=()dx+dx=(xx3)+(x3x)=故答案为:15【答案】【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线经过点时,取得最大值,所以,故16【答案】x|x1或x0 【解析】解:即即x(x1)0解得x1或x0故答案为x|x1或x0【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法注意不等式的解以解集形式写出17【答案】5 【解析】解:f(x)=,f(7)=log39=2,f(log36)=+1=,f(7)+f(log36)=2+3=5故答案为:518【答案】 【解析】解:a是甲抛掷一枚骰子得到的点数,试验发生包含的事件数6,方程x2+ax+a=0 有两个不等实根,a24a0,解得a4,a是正整数,a=5,6,即满足条件的事件有2种结果,所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键三、解答题19【答案】 【解析】解:()已知等式2bcosC=2ac,利用正弦定理化简得:2sinBcosC=2sinAsinC=2sin(B+C)sinC=2sinBcosC+2cosBsinCsinC,整理得:2cosBsinCsinC=0,sinC0,cosB=,则B=60;()ABC的面积为=acsinB=ac,解得:ac=4,又b=2,由余弦定理可得:22=a2+c2ac=(a+c)23ac=(a+c)212,解得:a+c=4,联立解得:a=c=220【答案】 【解析】解:(1)圆弧 C1所在圆的方程为 x2+y2=169,令x=5,解得M(5,12),N(5,12)2分则直线AM的中垂线方程为 y6=2(x17),令y=0,得圆弧 C2所在圆的圆心为 (14,0),又圆弧C2 所在圆的半径为2914=15,所以圆弧C2 的方程为(x14)2+y2=225(5x29)5分(2)假设存在这样的点P(x,y),则由PA=PO,得x2+y2+2x29=0 8分由,解得x=70 (舍去) 9分由,解得 x=0(舍去),综上知,这样的点P不存在10分【点评】本题以圆为载体,考查圆的方程,考查曲线的交点,同时考查距离公式的运用,综合性强21【答案】 【解析】(本小题满分10分)解:(1),2分在锐角ABC中,3分故sinA0,5分(2),6分,即ab=2,8分10分【点评】本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题22【答案】(1)(2),6【解析】试题解析:(1)由题意,化简得解得,所以(2)因为是奇函数,所以,所以化简并变形得:要使上式对任意的成立,则解得:,因为的定义域是,所以舍去所以,所以对任意有:因为,所以,所以,因此在R上递减因为,所以,即在时有解所以,解得:,所以的取值范围为因为,所以即所以不等式恒成立,即,即:恒成立令,则在时恒成立令,时,所以在上单调递减时,所以在上单调递增所以,所以所以,实数m的最大值为6 考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。23【答案】(本小题满分13分)解:(), (1分)当时,解得或,解得,的递增区间为和,的递减区间为 (4分)当时,的递增区间为,递减区间为 (5分)当时,解得,解得或的递增区间为,的递减区间为和 (7分)()当时,由()知上递减,在上递增,在上递减,在没有零点 (9分),在上递减,在上,存在唯一的,使得且 (12分)综上所述,当时,有唯一的零点,且 (13分)24【答案】 【解析】解:()f(x)的定义域为(,+),f(x)=1+a2x3x2,由f(x)=0,得x1=,x2=,x1x2,由f(x)0得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训教师岗位证书课件
- 2025年榆林华源电力有限责任公司招聘(5人)模拟试卷及完整答案详解1套
- 2025春季中国电信实习生招聘模拟试卷含答案详解
- 2025年安徽皖信人力资源管理铜陵分公司招聘20人模拟试卷含答案详解
- 2025内蒙古鄂尔多斯市康巴什区青年就业见习计划招募模拟试卷及答案详解(名师系列)
- 2025国家农业农村部食物与营养发展研究所综合办公室助理招聘4人模拟试卷及答案详解(必刷)
- 小学劳动安全培训制度课件
- 2025河北邯郸冀南新区选聘农村党务(村务)工作者111人考前自测高频考点模拟试题及完整答案详解
- 2025年PCB制板项目合作计划书
- 2025年上海市金融稳定发展研究中心公开招聘工作人员考前自测高频考点模拟试题及1套完整答案详解
- 2025广西公需科目真题续集(附答案)
- T/CECS 10214-2022钢面镁质复合风管
- DL∕T 5776-2018 水平定向钻敷设电力管线技术规定
- 完形填空完整版教学设计
- ICU患者的人文关怀课件
- 《概率论与数理统计》-教学教案
- 放射培训考试习题及答案
- DB33∕1050-2016 城市建筑工程日照分析技术规程
- 道路、桥梁、隧道、地铁施工标准化手册(专业篇)
- 第十四章 环合反应天津大学
- 有机化学汪小兰 知识点总结 315化学
评论
0/150
提交评论