




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷冠县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图,程序框图的运算结果为( )A6B24C20D1202 已知集合M=1,4,7,MN=M,则集合N不可能是( )AB1,4CMD2,73 执行下面的程序框图,若输入,则输出的结果为( )A2015 B2016 C2116 D20484 已知双曲线(a0,b0)的一条渐近线方程为,则双曲线的离心率为( )ABCD5 不等式ax2+bx+c0(a0)的解集为R,那么( )Aa0,0Ba0,0Ca0,0Da0,06 命题“xR,2x2+10”的否定是( )AxR,2x2+10BCD7 下列结论正确的是( )A若直线l平面,直线l平面,则B若直线l平面,直线l平面,则C若直线l1,l2与平面所成的角相等,则l1l2D若直线l上两个不同的点A,B到平面的距离相等,则l8 如图所示,阴影部分表示的集合是( )A(UB)AB(UA)BCU(AB)DU(AB)9 已知函数f(x)=m(x)2lnx(mR),g(x)=,若至少存在一个x01,e,使得f(x0)g(x0)成立,则实数m的范围是( )A(,B(,)C(,0D(,0)10已知直线l平面,P,那么过点P且平行于l的直线( )A只有一条,不在平面内B只有一条,在平面内C有两条,不一定都在平面内D有无数条,不一定都在平面内11复数的值是( )A B C D【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题12已知双曲线=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )ABC3D5二、填空题13椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则PQF2的周长为14直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且AOB是直角三角形(O是坐标原点),则点P(a,b)与点(1,0)之间距离的最小值为15下列四个命题:两个相交平面有不在同一直线上的三个公交点经过空间任意三点有且只有一个平面过两平行直线有且只有一个平面在空间两两相交的三条直线必共面其中正确命题的序号是16如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是17过椭圆+=1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为18球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,ABC是边长为2的正三角形,平面SAB平面ABC,则棱锥SABC的体积的最大值为三、解答题19已知集合A=x|a1x2a+1,B=x|0x1(1)若a=,求AB(2)若AB=,求实数a的取值范围 20已知正项数列an的前n项的和为Sn,满足4Sn=(an+1)2()求数列an通项公式;()设数列bn满足bn=(nN*),求证:b1+b2+bn21已知函数f(x)=xlnx,求函数f(x)的最小值22定义在R上的增函数y=f(x)对任意x,yR都有f(x+y)=f(x)+f(y),则(1)求f(0); (2)证明:f(x)为奇函数;(3)若f(k3x)+f(3x9x2)0对任意xR恒成立,求实数k的取值范围 23已知函数f(x)=的定义域为A,集合B是不等式x2(2a+1)x+a2+a0的解集() 求A,B;() 若AB=B,求实数a的取值范围24已知函数f(x)=4sinxcosx5sin2xcos2x+3()当x0,时,求函数f(x)的值域;()若ABC的内角A,B,C的对边分别为a,b,c,且满足=, =2+2cos(A+C),求f(B)的值冠县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 B【解析】解:循环体中S=Sn可知程序的功能是:计算并输出循环变量n的累乘值,循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1234=24,故选:B【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键2 【答案】D【解析】解:MN=M,NM,集合N不可能是2,7,故选:D【点评】本题主要考查集合的关系的判断,比较基础3 【答案】D【解析】试题分析:由于,由程序框图可得对循环进行加运算,可以得到,从而可得,由于,则进行循环,最终可得输出结果为1考点:程序框图4 【答案】A【解析】解:双曲线的中心在原点,焦点在x轴上,设双曲线的方程为,(a0,b0)由此可得双曲线的渐近线方程为y=x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c=5t(t0)该双曲线的离心率是e=故选A【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题5 【答案】A【解析】解:不等式ax2+bx+c0(a0)的解集为R,a0,且=b24ac0,综上,不等式ax2+bx+c0(a0)的解集为的条件是:a0且0故选A6 【答案】C【解析】解:命题xR,2x2+10是全称命题,根据全称命题的否定是特称命题得命题的否定是:“”,故选:C【点评】本题主要考查含有量词的命题的否定,要求掌握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础7 【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交故选:B【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础8 【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,对应的集合表示为AUB故选:A9 【答案】 B【解析】解:由题意,不等式f(x)g(x)在1,e上有解,mx2lnx,即在1,e上有解,令h(x)=,则h(x)=,1xe,h(x)0,h(x)max=h(e)=,h(e)=,mm的取值范围是(,)故选:B【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用10【答案】B【解析】解:假设过点P且平行于l的直线有两条m与nml且nl由平行公理4得mn这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误故选B【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型11【答案】【解析】12【答案】A【解析】解:抛物线y2=12x的焦点坐标为(3,0)双曲线的右焦点与抛物线y2=12x的焦点重合4+b2=9b2=5双曲线的一条渐近线方程为,即双曲线的焦点到其渐近线的距离等于故选A【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键二、填空题13【答案】20 【解析】解:a=5,由椭圆第一定义可知PQF2的周长=4aPQF2的周长=20,故答案为20【点评】作出草图,结合图形求解事半功倍14【答案】 【解析】解:AOB是直角三角形(O是坐标原点),圆心到直线ax+by=1的距离d=,即d=,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d=,点P(a,b)与点(1,0)之间距离的最小值为故答案为:【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力15【答案】 【解析】解:两个相交平面的公交点一定在平面的交线上,故错误;经过空间不共线三点有且只有一个平面,故错误;过两平行直线有且只有一个平面,正确;在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是,故答案为:16【答案】 【解析】解:由题意图形折叠为三棱锥,底面为EFC,高为AC,所以三棱柱的体积:112=,故答案为:【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力17【答案】 【解析】解:由题意知点P的坐标为(c,)或(c,),F1PF2=60,=,即2ac=b2=(a2c2)e2+2e=0,e=或e=(舍去)故答案为:【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题18【答案】 【解析】解:由题意画出几何体的图形如图由于面SAB面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥SABC的体积最大ABC是边长为2的正三角形,所以球的半径r=OC=CH=在RTSHO中,OH=OC=OSHSO=30,求得SH=OScos30=1,体积V=Sh=221=故答案是【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键考查空间想象能力、计算能力三、解答题19【答案】【解析】解:(1)当a=时,A=x|,B=x|0x1AB=x|0x1(2)若AB=当A=时,有a12a+1a2当A时,有2a或a2综上可得,或a2【点评】本题主要考查了集合交集的求解,解题时要注意由AB=时,要考虑集合A=的情况,体现了分类讨论思想的应用20【答案】 【解析】()解:由4Sn=(an+1)2,令n=1,得,即a1=1,又4Sn+1=(an+1+1)2,整理得:(an+1+an)(an+1an2)=0an0,an+1an=2,则an是等差数列,an=1+2(n1)=2n1;()证明:由()可知,bn=,则b1+b2+bn=21【答案】 【解析】解:函数的定义域为(0,+)求导函数,可得f(x)=1+lnx令f(x)=1+lnx=0,可得0x时,f(x)0,x时,f(x)0时,函数取得极小值,也是函数的最小值f(x)min=【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题22【答案】 【解析】解:(1)在f(x+y)=f(x)+f(y)中,令x=y=0可得,f(0)=f(0)+f(0),则f(0)=0,(2)令y=x,得f(xx)=f(x)+f(x),又f(0)=0,则有0=f(x)+f(x),即可证得f(x)为奇函数;(3)因为f(x)在R上是增函数,又由(2)知f(x)是奇函数,f(k3x)f(3x9x2)=f(3x+9x+2),即有k3x3x+9x+2,得,又有,即有最小值21,所以要使f(k3x)+f(3x9x2)0恒成立,只要使即可,故k的取值范围是(,21) 23【答案】 【解析】解:(),化为(x2)(x+1)0,解得x2或x1,函数f(x)=的定义域A=(,1)(2,+);由不等式x2(2a+1)x+a2+a0化为(xa)(xa1)0,又a+1a,xa+1或xa,不等式x2(2a+1)x+a2+a0的解集B=(,a)(a+1,+);()AB=B,AB,解得1a1实数a的取值范围1,124【答案】 【解析】解:()f(x)=4sinxcosx5sin2xcos2x+3=2sin2x+3=2sin2x+2cos2x=4sin(2x+)x0,2x+,f(x)2,4()由条件得 sin(2A+C)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 24495-2:2025 EN Plain language - Part 2: Legal communication
- 年保定一模数学试卷
- 朗诵清明诗歌活动方案策划(3篇)
- 壁球馆施工方案(3篇)
- 黑色旅游活动策划方案(3篇)
- 休闲旅游活动策划方案(3篇)
- 江苏企业舞蹈活动策划方案(3篇)
- 动态雕塑施工方案模板(3篇)
- 紫薇田园都市施工方案(3篇)
- 烟感系统安装施工方案(3篇)
- CJ/T 43-2005水处理用滤料
- 护理十八项核心制度考试题与答案
- 数据标注项目管理制度
- 云南劳动合同续签协议书
- 如何写好作文开头结尾 课件
- 2025安徽农业大学辅导员考试试题及答案
- 井工煤矿风险监测预警处置方案之安全监控系统监测预警处置方案
- 回收拆除废旧设备合同协议书
- 入股买船合同协议书
- 2025四川农商联合银行笔试题库及答案
- 2025四川农信(农商行)社会招聘800人笔试历年典型考题及考点剖析附带答案详解
评论
0/150
提交评论