




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷桐城市第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知函数f(x)=x4cosx+mx2+x(mR),若导函数f(x)在区间2,2上有最大值10,则导函数f(x)在区间2,2上的最小值为( )A12B10C8D62 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要4030不需要160270由算得附表:参照附表,则下列结论正确的是( )有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;采用系统抽样方法比采用简单随机抽样方法更好;采用分层抽样方法比采用简单随机抽样方法更好;A B C D3 已知函数f(x)满足f(x)=f(x),且当x(,)时,f(x)=ex+sinx,则( )ABCD4 已知全集,则有( )A B C D5 若函数y=x2+bx+3在0,+)上是单调函数,则有( )Ab0Bb0Cb0Db06 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A抽签法B随机数表法C系统抽样法D分层抽样法7 已知某市两次数学测试的成绩1和2分别服从正态分布1:N1(90,86)和2:N2(93,79),则以下结论正确的是( )A第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定8 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( ) A20+2B20+3C24+3D24+39 直线l将圆x2+y22x+4y=0平分,且在两坐标轴上的截距相等,则直线l的方程是( )Axy+1=0,2xy=0Bxy1=0,x2y=0Cx+y+1=0,2x+y=0Dxy+1=0,x+2y=010某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等据此可判断丙必定值班的日期是( )A2日和5日B5日和6日C6日和11日D2日和11日11若集合A=x|2x1,B=x|0x2,则集合AB=( )Ax|1x1Bx|2x1Cx|2x2Dx|0x112如图,棱长为1的正方体ABCDA1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有( )三棱锥MDCC1的体积为定值 DC1D1MAMD1的最大值为90 AM+MD1的最小值为2ABCD二、填空题13抛物线的焦点为,经过其准线与轴的交点的直线与抛物线切于点,则外接圆的标准方程为_.14如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成15函数y=f(x)的图象在点M(1,f(1)处的切线方程是y=3x2,则f(1)+f(1)=16计算sin43cos13cos43sin13的值为17已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_(单位:)18下列命题:函数y=sinx和y=tanx在第一象限都是增函数;若函数f(x)在a,b上满足f(a)f(b)0,函数f(x)在(a,b)上至少有一个零点;数列an为等差数列,设数列an的前n项和为Sn,S100,S110,Sn最大值为S5;在ABC中,AB的充要条件是cos2Acos2B;在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强其中正确命题的序号是(把所有正确命题的序号都写上)三、解答题19某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元)20已知抛物线C:x2=2y的焦点为F()设抛物线上任一点P(m,n)求证:以P为切点与抛物线相切的方程是mx=y+n;()若过动点M(x0,0)(x00)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明21如图,在三棱锥ABCD中,AB平面BCD,BCCD,E,F,G分别是AC,AD,BC的中点求证:(I)AB平面EFG;(II)平面EFG平面ABC22已知函数f(x)=|xm|,关于x的不等式f(x)3的解集为1,5(1)求实数m的值;(2)已知a,b,cR,且a2b+2c=m,求a2+b2+c2的最小值 23已知函数f(x)=loga(1+x)loga(1x)(a0,a1)()判断f(x)奇偶性,并证明;()当0a1时,解不等式f(x)024已知,其中e是自然常数,aR()讨论a=1时,函数f(x)的单调性、极值; ()求证:在()的条件下,f(x)g(x)+桐城市第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:由已知得f(x)=4x3cosxx4sinx+2mx+1,令g(x)=4x3cosxx4sinx+2mx是奇函数,由f(x)的最大值为10知:g(x)的最大值为9,最小值为9,从而f(x)的最小值为9+1=8故选C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大2 【答案】D 【解析】解析:本题考查独立性检验与统计抽样调查方法由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,正确,选D3 【答案】D【解析】解:由f(x)=f(x)知,f()=f()=f(),当x(,)时,f(x)=ex+sinx为增函数,f()f()f(),f()f()f(),故选:D4 【答案】A 【解析】解析:本题考查集合的关系与运算,选A5 【答案】A【解析】解:抛物线f(x)=x2+bx+3开口向上,以直线x=为对称轴,若函数y=x2+bx+3在0,+)上单调递增函数,则0,解得:b0,故选:A【点评】本题考查二次函数的性质和应用,是基础题解题时要认真审题,仔细解答6 【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,是系统抽样法,故选:C【点评】本题考查了系统抽样抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样属于基础题7 【答案】C【解析】解:某市两次数学测试的成绩1和2分别服从正态分布1:N1(90,86)和2:N2(93,79),1=90,1=86,2=93,2=79,第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础8 【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=22+=4+,底面周长C=23+=6+,高为2,故柱体的侧面积为:(6+)2=12+2,故柱体的全面积为:12+2+2(4+)=20+3,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键9 【答案】C【解析】解:圆x2+y22x+4y=0化为:圆(x1)2+(y+2)2=5,圆的圆心坐标(1,2),半径为,直线l将圆x2+y22x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点或者直线经过圆心,直线的斜率为1,直线l的方程是:y+2=(x1),2x+y=0,即x+y+1=0,2x+y=0故选:C【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题10【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础11【答案】D【解析】解:AB=x|2x1x|0x2=x|0x1故选D12【答案】A【解析】解:A1B平面DCC1D1,线段A1B上的点M到平面DCC1D1的距离都为1,又DCC1的面积为定值,因此三棱锥MDCC1的体积V=为定值,故正确A1D1DC1,A1BDC1,DC1面A1BCD1,D1P面A1BCD1,DC1D1P,故正确当0A1P时,在AD1M中,利用余弦定理可得APD1为钝角,故不正确;将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在D1A1A中,D1A1A=135,利用余弦定理解三角形得AD1=2,故不正确因此只有正确故选:A二、填空题13【答案】或【解析】试题分析:由题意知,设,由,则切线方程为,代入得,则,可得,则外接圆以为直径,则或.故本题答案填或1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质14【答案】4 【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成故答案为:415【答案】4 【解析】解:由题意得f(1)=3,且f(1)=312=1所以f(1)+f(1)=3+1=4故答案为4【点评】本题主要考查导数的几何意义,要注意分清f(a)与f(a)16【答案】 【解析】解:sin43cos13cos43sin13=sin(4313)=sin30=,故答案为17【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。所以故答案为:18【答案】 【解析】解:函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,但是,因此不是单调递增函数;若函数f(x)在a,b上满足f(a)f(b)0,函数f(x)在(a,b)上至少有一个零点,正确;数列an为等差数列,设数列an的前n项和为Sn,S100,S110, =5(a6+a5)0, =11a60,a5+a60,a60,a50因此Sn最大值为S5,正确;在ABC中,cos2Acos2B=2sin(A+B)sin(AB)=2sin(A+B)sin(BA)0AB,因此正确;在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确其中正确命题的序号是 【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题三、解答题19【答案】 【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k1x,g(x)=k2,(k1,k20;x0)由图知f(1)=,k1=又g(4)=,k2=从而f(x)=,g(x)=(x0)(2)设A产品投入x万元,则B产品投入10x万元,设企业的利润为y万元y=f(x)+g(10x)=,(0x10),令,(0t)当t=,ymax4,此时x=3.75当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题解题的关键是换元,利用二次函数的求最值的方法求解20【答案】 【解析】证明:()由抛物线C:x2=2y得,y=x2,则y=x,在点P(m,n)切线的斜率k=m,切线方程是yn=m(xm),即yn=mxm2,又点P(m,n)是抛物线上一点,m2=2n,切线方程是mx2n=yn,即mx=y+n ()直线MF与直线l位置关系是垂直由()得,设切点为P(m,n),则切线l方程为mx=y+n,切线l的斜率k=m,点M(,0),又点F(0,),此时,kMF= kkMF=m()=1,直线MF直线l 【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题21【答案】 【解析】证明:(I)在三棱锥ABCD中,E,G分别是AC,BC的中点所以ABEG因为EG平面EFG,AB平面EFG所以AB平面EFG(II)因为AB平面BCD,CD平面BCD所以ABCD又BCCD且ABBC=B所以CD平面ABC又E,F分别是AC,AD,的中点所以CDEF所以EF平面ABC又EF平面EFG,所以平面平面EFG平面ABC【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键22【答案】 【解析】解:(1)|xm|33xm3m3xm+3,由题意得,解得m=2;(2)由(1)可得a2b+2c=2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论