虹口区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
虹口区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
虹口区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
虹口区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
虹口区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

虹口区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()AB8CD2 设全集U=MN=1,2,3,4,5,MUN=2,4,则N=( )A1,2,3B1,3,5C1,4,5D2,3,43 已知集合A,B,C中,AB,AC,若B=0,1,2,3,C=0,2,4,则A的子集最多有( )A2个B4个C6个D8个4 已知向量|=, =10,|+|=5,则|=( )ABC5D255 已知集合A=0,1,2,则集合B=xy|xA,yA中元素的个数是( )A1B3C5D96 下列函数中,既是奇函数又是减函数的为( )Ay=x+1By=x2CDy=x|x|7 lgx,lgy,lgz成等差数列是由y2=zx成立的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件8 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若m,n,则mn;若,m,则m;其中正确命题的序号是( )ABCD9 全称命题:xR,x20的否定是( )AxR,x20BxR,x20CxR,x20DxR,x2010的大小关系为( )ABC.D11在下列区间中,函数f(x)=()xx的零点所在的区间为( )A(0,1)B(1,2)C(2,3 )D(3,4)12如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A BC D二、填空题13已知数列an满足an+1=e+an(nN*,e=2.71828)且a3=4e,则a2015=14已知函数在处取得极小值10,则的值为 15设等差数列an的前n项和为Sn,若1a31,0a63,则S9的取值范围是16【泰州中学2018届高三10月月考】设函数,其中,若存在唯一的整数,使得,则的取值范围是 17已知,与的夹角为,则 18已知复数,则1+z50+z100=三、解答题19在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y1)2=4和圆C2:(x4)2+(y5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标20已知斜率为1的直线l经过抛物线y2=2px(p0)的焦点F,且与抛物线相交于A,B两点,|AB|=4(I)求p的值;(II)若经过点D(2,1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围21已知p:“直线x+ym=0与圆(x1)2+y2=1相交”;q:“方程x2x+m4=0的两根异号”若pq为真,p为真,求实数m的取值范围22某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?23如图所示,已知+=1(a0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合()求椭圆C的方程;()求ABD面积的最大值;()设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数,使得k1+k2=0成立?若存在,求出的值;否则说明理由 24已知全集U=R,函数y=+的定义域为A,B=y|y=2x,1x2,求:(1)集合A,B;(2)(UA)B虹口区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为: =4,另一个侧面的面积为: =4,四个面中面积的最大值为4;故选C2 【答案】B【解析】解:全集U=MN=1,2,3,4,5,MCuN=2,4,集合M,N对应的韦恩图为所以N=1,3,5故选B3 【答案】B【解析】解:因为B=0,1,2,3,C=0,2,4,且AB,AC;ABC=0,2集合A可能为0,2,即最多有2个元素,故最多有4个子集故选:B4 【答案】C【解析】解:;由得, =;故选:C5 【答案】C【解析】解:A=0,1,2,B=xy|xA,yA,当x=0,y分别取0,1,2时,xy的值分别为0,1,2;当x=1,y分别取0,1,2时,xy的值分别为1,0,1;当x=2,y分别取0,1,2时,xy的值分别为2,1,0;B=2,1,0,1,2,集合B=xy|xA,yA中元素的个数是5个故选C6 【答案】D【解析】解:y=x+1不是奇函数;y=x2不是奇函数;是奇函数,但不是减函数;y=x|x|既是奇函数又是减函数,故选:D【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题7 【答案】A【解析】解:lgx,lgy,lgz成等差数列,2lgy=lgxlgz,即y2=zx,充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题8 【答案】B【解析】解:由m、n是两条不同的直线,是三个不同的平面:在中:若m,n,则由直线与平面垂直得mn,故正确;在中:若,则,m,由直线垂直于平面的性质定理得m,故正确;在中:若m,n,则由直线与平面垂直的性质定理得mn,故正确;在中:若,m,则m或m,故错误故选:B9 【答案】D【解析】解:命题:xR,x20的否定是:xR,x20故选D【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“”的否定用“”了这里就有注意量词的否定形式如“都是”的否定是“不都是”,而不是“都不是”特称命题的否定是全称命题,“存在”对应“任意”10【答案】B【解析】试题分析:由于,因为,所以,又,考点:实数的大小比较.11【答案】A【解析】解:函数f(x)=()xx,可得f(0)=10,f(1)=0f(2)=0,函数的零点在(0,1)故选:A12【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。故答案为:B二、填空题13【答案】2016 【解析】解:由an+1=e+an,得an+1an=e,数列an是以e为公差的等差数列,则a1=a32e=4e2e=2e,a2015=a1+2014e=2e+2014e=2016e故答案为:2016e【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题14【答案】考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f(x)求方程f(x)0的根列表检验f(x)在f(x)0的根的附近两侧的符号下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f(x0)0,且在该点左、右两侧的导数值符号相反.15【答案】(3,21) 【解析】解:数列an是等差数列,S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=633a33,06a618,两式相加即得3S921S9的取值范围是(3,21)故答案为:(3,21)【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题16【答案】【解析】试题分析:设,由题设可知存在唯一的整数,使得在直线的下方.因为,故当时,函数单调递减; 当时,函数单调递增;故,而当时,故当且,解之得,应填答案.考点:函数的图象和性质及导数知识的综合运用【易错点晴】本题以函数存在唯一的整数零点,使得为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.17【答案】【解析】解析:本题考查向量夹角与向量数量积的应用与的夹角为,18【答案】i 【解析】解:复数,所以z2=i,又i2=1,所以1+z50+z100=1+i25+i50=1+i1=i;故答案为:i【点评】本题考查了虚数单位i的性质运用;注意i2=1三、解答题19【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程【解答】解:(1)由于直线x=4与圆C1不相交;直线l的斜率存在,设l方程为:y=k(x4)(1分)圆C1的圆心到直线l的距离为d,l被C1截得的弦长为2d=1(2分)d=从而k(24k+7)=0即k=0或k=直线l的方程为:y=0或7x+24y28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为yb=k(xa),k0则直线l2方程为:yb=(xa)(6分)C1和C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+akb|=|5k+4abk|1+3k+akb=(5k+4abk)即(a+b2)k=ba+3或(ab+8)k=a+b5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,)或点P2(,)(12分)20【答案】 【解析】解:(I)由题意可知,抛物线y2=2px(p0)的焦点坐标为,准线方程为所以,直线l的方程为由消y并整理,得设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1(II)由(I)可知,抛物线的方程为y2=2x由题意,直线m的方程为y=kx+(2k1)由方程组(1)可得ky22y+4k2=0(2)当k=0时,由方程(2),得y=1把y=1代入y2=2x,得这时直线m与抛物线只有一个公共点当k0时,方程(2)得判别式为=44k(4k2)由0,即44k(4k2)0,亦即4k22k10解得于是,当且k0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,因此,所求m的取值范围是【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题21【答案】 【解析】解:若命题p是真命题:“直线x+ym=0与圆(x1)2+y2=1相交”,则1,解得1;若命题q是真命题:“方程x2x+m4=0的两根异号”,则m40,解得m4若pq为真,p为真,则p为假命题,q为真命题实数m的取值范围是或【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题22【答案】【解析】(1)f(t)=10=102sin(t+),t0,24),t+,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为102=8,故实验室这一天的最大温差为128=4。(2)由题意可得,当f(t)11时,需要降温,由()可得f(t)=102sin(t+),由102sin(t+)11,求得sin(t+),即t+,解得10t18,即在10时到18时,需要降温。23【答案】 【解析】解:(),a=c,b2=c2椭圆方程为+=1又点A(1,)在椭圆上,=1,c2=2a=2,b=,椭圆方程为=1 ()设直线BD方程为y=x+b,D(x1,y1),B(x2,y2),与椭圆方程联立,可得4x2+2bx+b24=0=8b2+640,2b2x1+x2=b,x1x2=|BD|=,设d为点A到直线y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论