仁寿县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
仁寿县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
仁寿县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
仁寿县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
仁寿县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

仁寿县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数y=(x25x+6)的单调减区间为( )A(,+)B(3,+)C(,)D(,2)2 执行如图所示的程序,若输入的,则输出的所有的值的和为( )A243B363C729D1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力3 已知数列的各项均为正数,若数列的前项和为5,则( )A B C D4 已知椭圆C: +=1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若AF1B的周长为4,则C的方程为( )A +=1B +y2=1C +=1D +=15 设x,y满足线性约束条件,若z=axy(a0)取得最大值的最优解有数多个,则实数a的值为( )A2BCD36 方程x2+2ax+y2=0(a0)表示的圆( )A关于x轴对称B关于y轴对称C关于直线y=x轴对称D关于直线y=x轴对称7 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D88 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )AB4CD29 的内角,所对的边分别为,已知,则( )111A B或 C或 D10已知m,n为不同的直线,为不同的平面,则下列说法正确的是( )Am,nmnBm,nmnCm,n,mnDn,n11已知全集,则( )A B C D12已知函数,则( )A B C1 D【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力二、填空题13若函数在区间上单调递增,则实数的取值范围是_.14台风“海马”以25km/h的速度向正北方向移动,观测站位于海上的A点,早上9点观测,台风中心位于其东南方向的B点;早上10点观测,台风中心位于其南偏东75方向上的C点,这时观测站与台风中心的距离AC等于km15若点p(1,1)为圆(x3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 16在ABC中,若a=9,b=10,c=12,则ABC的形状是 17对于集合M,定义函数对于两个集合A,B,定义集合AB=x|fA(x)fB(x)=1已知A=2,4,6,8,10,B=1,2,4,8,12,则用列举法写出集合AB的结果为18【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数和均相切(其中为常数),切点分别为和,则的值为_三、解答题19(1)直线l的方程为(a+1)x+y+2a=0(aR)若l在两坐标轴上的截距相等,求a的值;(2)已知A(2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程20已知函数.(1)当函数在点处的切线方程为,求函数的解析式;(2)在(1)的条件下,若是函数的零点,且,求的值;(3)当时,函数有两个零点,且,求证:21已知条件,条件,且是的一个必要不充分条件,求实数的取值范围22(本小题满分12分)已知函数,数列满足:,().(1)求数列的通项公式;(2)设数列的前项和为,求数列的前项和.【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.23记函数f(x)=log2(2x3)的定义域为集合M,函数g(x)=的定义域为集合N求:()集合M,N;()集合MN,R(MN) 24已知函数()若函数f(x)在区间1,+)内单调递增,求实数a的取值范围;()求函数f(x)在区间1,e上的最小值仁寿县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:令t=x25x+6=(x2)(x3)0,可得 x2,或 x3,故函数y=(x25x+6)的定义域为(,2)(3,+)本题即求函数t在定义域(,2)(3,+)上的增区间结合二次函数的性质可得,函数t在(,2)(3,+)上的增区间为 (3,+),故选B2 【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D3 【答案】C 【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前项和由得,是等差数列,公差为,首项为,由得,数列的前项和为,选C4 【答案】A【解析】解:AF1B的周长为4,AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,4a=4,a=,离心率为,c=1,b=,椭圆C的方程为+=1故选:A【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题5 【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=axy(a0)得y=axz,a0,目标函数的斜率k=a0平移直线y=axz,由图象可知当直线y=axz和直线2xy+2=0平行时,当直线经过B时,此时目标函数取得最大值时最优解只有一个,不满足条件当直线y=axz和直线x3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件此时a=故选:B6 【答案】A【解析】解:方程x2+2ax+y2=0(a0)可化为(x+a)2+y2=a2,圆心为(a,0),方程x2+2ax+y2=0(a0)表示的圆关于x轴对称,故选:A【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键7 【答案】B【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力8 【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h=3故V=2故选C9 【答案】B【解析】试题分析:由正弦定理可得: 或,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数.10【答案】D【解析】解:在A选项中,可能有n,故A错误;在B选项中,可能有n,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确故选:D【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养11【答案】A考点:集合交集,并集和补集【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.12【答案】B【解析】,故选B二、填空题13【答案】【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即恒成立,可得,故答案为.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.14【答案】25 【解析】解:由题意,ABC=135,A=7545=30,BC=25km,由正弦定理可得AC=25km,故答案为:25【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键15【答案】:2xy1=0解:P(1,1)为圆(x3)2+y2=9的弦MN的中点,圆心与点P确定的直线斜率为=,弦MN所在直线的斜率为2,则弦MN所在直线的方程为y1=2(x1),即2xy1=0故答案为:2xy1=016【答案】锐角三角形【解析】解:c=12是最大边,角C是最大角根据余弦定理,得cosC=0C(0,),角C是锐角,由此可得A、B也是锐角,所以ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题17【答案】1,6,10,12 【解析】解:要使fA(x)fB(x)=1,必有xx|xA且xBx|xB且xA=6,101,12=1,6,10,12,所以AB=1,6,10,12故答案为1,6,10,12【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题18【答案】【解析】三、解答题19【答案】 【解析】解:(1)当a=1时,直线化为y+3=0,不符合条件,应舍去;当a1时,分别令x=0,y=0,解得与坐标轴的交点(0,a2),(,0)直线l在两坐标轴上的截距相等,a2=,解得a=2或a=0;(2)A(2,4),B(4,0),线段AB的中点C坐标为(1,2)又|AB|=,所求圆的半径r=|AB|=因此,以线段AB为直径的圆C的标准方程为(x1)2+(y2)2=1320【答案】(1);(2);(3)证明见解析.【解析】试题解析: (1),所以,函数的解析式为;(2),因为函数的定义域为,令或,当时,单调递减,当时,函数单调递增,且函数的定义域为,(3)当时,函数,两式相减可得,因为,所以设,所以在上为增函数,且,又,所以考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.21【答案】【解析】试题分析:先化简条件得,分三种情况化简条件,由是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由得,由得,当时,;当时,;当时, 由题意得,是的一个必要不充分条件,当时,满足条件;当时,得,当时,得 综上,考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断是的什么条件,需要从两方面分析:一是由条件能否推得条件,二是由条件能否推得条件.对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题本题的解答是根据集合思想解不等式求解的.22【答案】【解析】(1),. 即,所以数列是以首项为2,公差为2的等差数列, . (5分)(2)数列是等差数列,. (8分). (12分)23【答案】【解析】解:(1)由2x30 得 x,M=x|x由(x3)(x1)0 得 x1 或x3,N=x|x1,或 x3(2)MN=(3,+),MN=x|x1,或 x3,CR(MN)=【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题24【答案】 【解析】解:(1)由已知得:f(x)=要使函数f(x)在区间1,+)内单调递增,只需0在1,+)上恒成立结合a0可知,只需a,x1,+)即可易知,此时=1,所以只需a1即可(2)结合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论