龙胜各族自治县二中2018-2019学年上学期高二数学12月月考试题含解析_第1页
龙胜各族自治县二中2018-2019学年上学期高二数学12月月考试题含解析_第2页
龙胜各族自治县二中2018-2019学年上学期高二数学12月月考试题含解析_第3页
龙胜各族自治县二中2018-2019学年上学期高二数学12月月考试题含解析_第4页
龙胜各族自治县二中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷龙胜各族自治县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 对于任意两个正整数m,n,定义某种运算“”如下:当m,n都为正偶数或正奇数时,mn=m+n;当m,n中一个为正偶数,另一个为正奇数时,mn=mn则在此定义下,集合M=(a,b)|ab=12,aN*,bN*中的元素个数是( )A10个B15个C16个D18个2 半径R的半圆卷成一个圆锥,则它的体积为( )AR3BR3CR3DR33 已知函数f(x)=xexmx+m,若f(x)0的解集为(a,b),其中b0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是( )ABCD4 以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x00,y00)满足=,则S( )A2B4C1D15 在ABC中,角A,B,C所对的边分别为a,b,c,若(acosB+bcosA)=2csinC,a+b=8,且ABC的面积的最大值为4,则此时ABC的形状为( )A等腰三角形B正三角形C直角三角形D钝角三角形6 集合的真子集共有( )A个 B个 C个 D个7 已知函数f(x)=x3+mx2+(2m+3)x(mR)存在两个极值点x1,x2,直线l经过点A(x1,x12),B(x2,x22),记圆(x+1)2+y2=上的点到直线l的最短距离为g(m),则g(m)的取值范围是( )A0,2B0,3C0,)D0,)8 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )ABCD9 若方程C:x2+=1(a是常数)则下列结论正确的是( )AaR+,方程C表示椭圆BaR,方程C表示双曲线CaR,方程C表示椭圆DaR,方程C表示抛物线10若椭圆+=1的离心率e=,则m的值为( )A1B或CD3或11如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为( )ABCD12已知命题“如果1a1,那么关于x的不等式(a24)x2+(a+2)x10的解集为”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A0个B1个C2个D4个二、填空题13经过A(3,1),且平行于y轴的直线方程为14定义:x(xR)表示不超过x的最大整数例如1.5=1,0.5=1给出下列结论:函数y=sinx是奇函数;函数y=sinx是周期为2的周期函数;函数y=sinxcosx不存在零点;函数y=sinx+cosx的值域是2,1,0,1其中正确的是(填上所有正确命题的编号)15下列说法中,正确的是(填序号)若集合A=x|kx2+4x+4=0中只有一个元素,则k=1;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称;y=()x是增函数;定义在R上的奇函数f(x)有f(x)f(x)016给出下列四个命题:函数f(x)=12sin2的最小正周期为2;“x24x5=0”的一个必要不充分条件是“x=5”;命题p:xR,tanx=1;命题q:xR,x2x+10,则命题“p(q)”是假命题;函数f(x)=x33x2+1在点(1,f(1)处的切线方程为3x+y2=0其中正确命题的序号是17等差数列中,公差,则使前项和取得最大值的自然数是_.18下列关于圆锥曲线的命题:其中真命题的序号(写出所有真命题的序号)设A,B为两个定点,若|PA|PB|=2,则动点P的轨迹为双曲线;设A,B为两个定点,若动点P满足|PA|=10|PB|,且|AB|=6,则|PA|的最大值为8;方程2x25x+2=0的两根可分别作椭圆和双曲线的离心率;双曲线=1与椭圆有相同的焦点三、解答题19如图,过抛物线C:x2=2py(p0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=4()p的值;()R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求MNT的面积的最小值20已知等差数列满足:=2,且,成等比数列。(1) 求数列的通项公式。(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.21某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50),50,60),90,100)后得到如图的频率分布直方图()求图中实数a的值;()根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;()若从样本中数学成绩在40,50)与90,100两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率22已知等差数列an满足a1+a2=3,a4a3=1设等比数列bn且b2=a4,b3=a8()求数列an,bn的通项公式;()设cn=an+bn,求数列cn前n项的和Sn23(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号()求第一次或第二次取到3号球的概率;()设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望24某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元)龙胜各族自治县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:ab=12,a、bN*,若a和b一奇一偶,则ab=12,满足此条件的有112=34,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有261=11个,所以满足条件的个数为4+11=15个故选B2 【答案】A【解析】解:2r=R,所以r=,则h=,所以V=故选A3 【答案】C【解析】解:设g(x)=xex,y=mxm,由题设原不等式有唯一整数解,即g(x)=xex在直线y=mxm下方,g(x)=(x+1)ex,g(x)在(,1)递减,在(1,+)递增,故g(x)min=g(1)=,y=mxm恒过定点P(1,0),结合函数图象得KPAmKPB,即m,故选:C【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题4 【答案】 A【解析】解:椭圆方程为+=1,其顶点坐标为(3,0)、(3,0),焦点坐标为(2,0)、(2,0),双曲线方程为,设点P(x,y),记F1(3,0),F2(3,0),=,=,整理得: =5,化简得:5x=12y15,又,54y2=20,解得:y=或y=(舍),P(3,),直线PF1方程为:5x12y+15=0,点M到直线PF1的距离d=1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是F1PF2的内心故=2,故选:A【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题5 【答案】A【解析】解:(acosB+bcosA)=2csinC,(sinAcosB+sinBcosA)=2sin2C,sinC=2sin2C,且sinC0,sinC=,a+b=8,可得:82,解得:ab16,(当且仅当a=b=4成立)ABC的面积的最大值SABC=absinC=4,a=b=4,则此时ABC的形状为等腰三角形故选:A6 【答案】C【解析】考点:真子集的概念.7 【答案】C【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f(x)=x2+2mx+2m+3,由题意可得,判别式0,即有4m24(2m+3)0,解得m3或m1,又x1+x2=2m,x1x2=2m+3,直线l经过点A(x1,x12),B(x2,x22),即有斜率k=x1+x2=2m,则有直线AB:yx12=2m(xx1),即为2mx+y2mx1x12=0,圆(x+1)2+y2=的圆心为(1,0),半径r为则g(m)=dr=,由于f(x1)=x12+2mx1+2m+3=0,则g(m)=,又m3或m1,即有m21则g(m)=,则有0g(m)故选C【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题8 【答案】C 【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项故选:C【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义9 【答案】 B【解析】解:当a=1时,方程C:即x2+y2=1,表示单位圆aR+,使方程C不表示椭圆故A项不正确;当a0时,方程C:表示焦点在x轴上的双曲线aR,方程C表示双曲线,得B项正确;aR,方程C不表示椭圆,得C项不正确不论a取何值,方程C:中没有一次项aR,方程C不能表示抛物线,故D项不正确综上所述,可得B为正确答案故选:B10【答案】D【解析】解:当椭圆+=1的焦点在x轴上时,a=,b=,c=由e=,得=,即m=3当椭圆+=1的焦点在y轴上时,a=,b=,c=由e=,得=,即m=故选D【点评】本题主要考查了椭圆的简单性质解题时要对椭圆的焦点在x轴和y轴进行分类讨论11【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题12【答案】C【解析】解:若不等式(a24)x2+(a+2)x10的解集为”,则根据题意需分两种情况:当a24=0时,即a=2,若a=2时,原不等式为4x10,解得x,故舍去,若a=2时,原不等式为10,无解,符合题意;当a240时,即a2,(a24)x2+(a+2)x10的解集是空集,解得,综上得,实数a的取值范围是则当1a1时,命题为真命题,则命题的逆否命题为真命题,反之不成立,即逆命题为假命题,否命题也为假命题,故它的逆命题、否命题、逆否命题及原命题中是假命题的共有2个,故选:C【点评】本题考查了二次不等式的解法,四种命题真假关系的应用,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想二、填空题13【答案】x=3 【解析】解:经过A(3,1),且平行于y轴的直线方程为:x=3故答案为:x=314【答案】 【解析】解:函数y=sinx是非奇非偶函数;函数y=sinx的周期与y=sinx的周期相同,故是周期为2的周期函数;函数y=sinx的取值是1,0,1,故y=sinxcosx不存在零点;函数数y=sinx、y=cosx的取值是1,0,1,故y=sinx+cosx的值域是2,1,0,1故答案为:【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键15【答案】 【解析】解:若集合A=x|kx2+4x+4=0中只有一个元素,则k=1或k=0,故错误;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称,故正确;y=()x是减函数,故错误;定义在R上的奇函数f(x)有f(x)f(x)0,故正确故答案为:【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档16【答案】 【解析】解:,T=2,故正确;当x=5时,有x24x5=0,但当x24x5=0时,不能推出x一定等于5,故“x=5”是“x24x5=0”成立的充分不必要条件,故错误;易知命题p为真,因为0,故命题q为真,所以p(q)为假命题,故正确;f(x)=3x26x,f(1)=3,在点(1,f(1)的切线方程为y(1)=3(x1),即3x+y2=0,故正确综上,正确的命题为故答案为17【答案】或【解析】试题分析:因为,且,所以,所以,所以,所以,所以,所以取得最大值时的自然数是或考点:等差数列的性质【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个易错点18【答案】 【解析】解:根据双曲线的定义可知,满足|PA|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以错误由|PA|=10|PB|,得|PA|+|PB|=10|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以正确方程2x25x+2=0的两个根为x=2或x=,所以方程2x25x+2=0的两根可分别作椭圆和双曲线的离心率,所以正确由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以错误故正确的命题为故答案为:【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质三、解答题19【答案】 【解析】解:()由题意设MN:y=kx+,由,消去y得,x22pkxp2=0(*)由题设,x1,x2是方程(*)的两实根,故p=2;()设R(x3,y3),Q(x4,y4),T(0,t),T在RQ的垂直平分线上,|TR|=|TQ|得,又,即4(y3y4)=(y3+y42t)(y4y3)而y3y4,4=y3+y42t又y3+y4=1,故T(0,)因此,由()得,x1+x2=4k,x1x2=4,=因此,当k=0时,SMNT有最小值3【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题20【答案】见解析。【解析】(1)设数列an的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化简得d24d=0,解得d=0或4,当d=0时,an=2,当d=4时,an=2+(n1)4=4n2。(2)当an=2时,Sn=2n,显然2n60n+800,此时不存在正整数n,使得Sn60n+800成立,当an=4n2时,Sn=2n2,令2n260n+800,即n230n4000,解得n40,或n10(舍去),此时存在正整数n,使得Sn60n+800成立,n的最小值为41,综上,当an=2时,不存在满足题意的正整数n,当an=4n2时,存在满足题意的正整数n,最小值为4121【答案】 【解析】解:()由频率分布直方图,得:10(0.005+0.01+0.025+a+0.01)=1,解得a=0.03()由频率分布直方图得到平均分:=0.0545+0.155+0.265+0.375+0.2585+0.195=74(分)()由频率分布直方图,得数学成绩在40,50)内的学生人数为400.05=2,这两人分别记为A,B,数学成绩在90,100)内的学生人数为400.1=4,这4人分别记为C,D,E,F,若从数学成绩在40,50)与90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,如果这两名学生的数学成绩都在40,50)或都在90,100)内,则这两名

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论