越西县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
越西县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
越西县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
越西县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
越西县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

越西县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若抛物线y2=2px的焦点与双曲线=1的右焦点重合,则p的值为( )A2B2C4D42 定义运算,例如若已知,则=( )ABCD3 若函数f(x)=3|x1|+m的图象与x轴没有交点,则实数m的取值范围是( )Am0或m1Bm0或m1Cm1或m0Dm1或m04 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1B-1C0D5 执行如图所示的程序,若输入的,则输出的所有的值的和为( )A243B363C729D1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力6 若复数(2+ai)2(aR)是实数(i是虚数单位),则实数a的值为( )A2B2C0D27 在二项式(x3)n(nN*)的展开式中,常数项为28,则n的值为( )A12B8C6D48 在ABC中,角A,B,C所对的边分别是a,b,c,若+1=0,则角B的度数是( )A60B120C150D60或1209 设a是函数x的零点,若x0a,则f(x0)的值满足( )Af(x0)=0Bf(x0)0Cf(x0)0Df(x0)的符号不确定10设Sn为等差数列an的前n项和,已知在Sn中有S170,S180,那么Sn中最小的是( )AS10BS9CS8DS711函数y=2x2e|x|在2,2的图象大致为( )ABCD12某几何体的三视图如图所示,则它的表面积为( )ABCD二、填空题13设函数则_;若,则的大小关系是_14已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 15一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是16已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当ABC的面积最小时,点C的坐标为17已知sin+cos=,且,则sincos的值为18如图,在棱长为的正方体中,点分别是棱的中点,是侧面内一点,若平行于平面,则线段长度的取值范围是_.三、解答题19如图,四棱锥中,为线段上一点,为的中点(1)证明:平面;(2)求直线与平面所成角的正弦值;20在锐角三角形ABC中,内角A,B,C所对的边分别为a,b,c,且2csinA=a(1)求角C的大小;(2)若c=2,a2+b2=6,求ABC的面积21已知函数f(x)=lg(2016+x),g(x)=lg(2016x)(1)判断函数f(x)g(x)的奇偶性,并予以证明(2)求使f(x)g(x)0成立x的集合22如图,四边形是等腰梯形,四边形 是矩形,平面,其中分别是的中点,是的中点(1)求证: 平面;(2)平面. 23已知m0,函数f(x)=2|x1|2x+m|的最大值为3()求实数m的值;()若实数a,b,c满足a2b+c=m,求a2+b2+c2的最小值 24已知f()=,(1)化简f(); (2)若f()=2,求sincos+cos2的值越西县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:双曲线=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),=2,p=4故选D【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题2 【答案】D【解析】解:由新定义可得, =故选:D【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题3 【答案】A【解析】解:函数f(x)=3|x1|+m的图象与x轴没有交点,m=3|x1|无解,|x1|0,03|x1|1,m0或m1,解得m0或m1故选:A4 【答案】B【解析】由题意,可取,所以5 【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D6 【答案】C【解析】解:复数(2+ai)2=4a2+4ai是实数,4a=0,解得a=0故选:C【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题7 【答案】B【解析】解:展开式通项公式为Tr+1=(1)rx3n4r,则二项式(x3)n(nN*)的展开式中,常数项为28,n=8,r=6故选:B【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题8 【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:+1=0,即1=,整理得:2sinAcosBcosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又A+B+C=180,sin(B+C)=sinA,可得2sinAcosB=sinA,sinA0,2cosB=1,即cosB=,则B=60故选:A【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键9 【答案】C【解析】解:作出y=2x和y=logx的函数图象,如图:由图象可知当x0a时,2logx0,f(x0)=2logx00故选:C10【答案】C【解析】解:S160,S170,=8(a8+a9)0,=17a90,a80,a90,公差d0Sn中最小的是S8故选:C【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题11【答案】D【解析】解:f(x)=y=2x2e|x|,f(x)=2(x)2e|x|=2x2e|x|,故函数为偶函数,当x=2时,y=8e2(0,1),故排除A,B; 当x0,2时,f(x)=y=2x2ex,f(x)=4xex=0有解,故函数y=2x2e|x|在0,2不是单调的,故排除C,故选:D12【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,母线长为,圆锥的表面积S=S底面+S侧面=12+22+=2+故选A【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量二、填空题13【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。故答案为:,14【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键15【答案】2:1 【解析】解:设圆锥、圆柱的母线为l,底面半径为r,所以圆锥的侧面积为: =rl圆柱的侧面积为:2rl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:116【答案】(,) 【解析】解:设C(a,b)则a2+b2=1,点A(2,0),点B(0,3),直线AB的解析式为:3x+2y6=0如图,过点C作CFAB于点F,欲使ABC的面积最小,只需线段CF最短则CF=,当且仅当2a=3b时,取“=”,a=,联立求得:a=,b=,故点C的坐标为(,)故答案是:(,)【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题17【答案】 【解析】解:sin+cos=,sin2+2sincos+cos2=,2sincos=1=,且sincos,sincos=故答案为:18【答案】【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.三、解答题19【答案】(1)证明见解析;(2).【解析】试题解析:(2)在三角形中,由,得,则,底面平面,平面平面,且平面平面,平面,则平面平面,在平面内,过作,交于,连结,则为直线与平面所成角。在中,由,得,所以直线与平面所成角的正弦值为1考点:立体几何证明垂直与平行20【答案】 【解析】(本小题满分10分)解:(1),2分在锐角ABC中,3分故sinA0,5分(2),6分,即ab=2,8分10分【点评】本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题21【答案】 【解析】解:(1)设h(x)=f(x)g(x)=lg(2016+x)lg(2016x),h(x)的定义域为(2016,2016);h(x)=lg(2016x)lg(2016+x)=h(x);f(x)g(x)为奇函数;(2)由f(x)g(x)0得,f(x)g(x);即lg(2016+x)lg(2016x);解得2016x0;使f(x)g(x)0成立x的集合为(2016,0)【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性22【答案】(1)证明见解析;(2)证明见解析【解析】考点:直线与平面平行的判定;直线与平面垂直的判定.23【答案】 【解析】解:()f(x)=2|x1|2x+m|=|2x2|2x+m|(2x2)(2x+m)|=|m+2|m0,f(x)|m+2|=m+2,当x=1时取等号,f(x)max=m+2,又f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论