




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东安区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设a=60.5,b=0.56,c=log0.56,则( )AcbaBcabCbacDbca2 若复数z=(其中aR,i是虚数单位)的实部与虚部相等,则a=( )A3B6C9D123 为得到函数的图象,可将函数的图象( )A向左平移个单位B向左平移个单位C.向右平移个单位D向右平移个单位 4 已知全集,则( )A B C D5 若等式(2x1)2014=a0+a1x+a2x2+a2014x2014对于一切实数x都成立,则a0+1+a2+a2014=( )ABCD06 已知一三棱锥的三视图如图所示,那么它的体积为( )A B C D7 设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( )A3a2B6a2C12a2D24a28 已知双曲线(a0,b0)的一条渐近线方程为,则双曲线的离心率为( )ABCD9 已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )A-2 B1 C2 D310某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是( )A10B11C12D13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力11已知函数 f(x)的定义域为R,其导函数f(x)的图象如图所示,则对于任意x1,x2R( x1x2),下列结论正确的是( )f(x)0恒成立;(x1x2)f(x1)f(x2)0;(x1x2)f(x1)f(x2)0;ABCD12方程x2+2ax+y2=0(a0)表示的圆( )A关于x轴对称B关于y轴对称C关于直线y=x轴对称D关于直线y=x轴对称二、填空题13已知a,b是互异的负数,A是a,b的等差中项,G是a,b的等比中项,则A与G的大小关系为14考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于15已知函数,其图象上任意一点处的切线的斜率恒成立,则实数的取值范围是 16若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力17若复数是纯虚数,则的值为 .【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力18如果实数满足等式,那么的最大值是 三、解答题19如图,点A是以线段BC为直径的圆O上一点,ADBC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P(1)求证:BF=EF;(2)求证:PA是圆O的切线20如图,矩形ABCD和梯形BEFC所在平面互相垂直,BECF,BCCF,EF=2,BE=3,CF=4()求证:EF平面DCE;()当AB的长为何值时,二面角AEFC的大小为6021如图,已知几何体的底面ABCD 为正方形,ACBD=N,PD平面ABCD,PD=AD=2EC,ECPD()求异面直线BD与AE所成角:()求证:BE平面PAD;()判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由22求函数f(x)=4x+4在0,3上的最大值与最小值23(本小题满分13分)如图,已知椭圆:的离心率为,以椭圆的左顶点为圆心作圆:(),设圆与椭圆交于点、_k.Com(1)求椭圆的方程;(2)求的最小值,并求此时圆的方程;(3)设点是椭圆上异于、的任意一点,且直线,分别与轴交于点(为坐标原点),求证:为定值 【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力24如图所示,在四棱锥中,底面为菱形,为与的交点,平面,为中点,为中点(1)证明:直线平面;(2)若点为中点,求三棱锥的体积东安区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:a=60.51,0b=0.561,c=log0.560,cba故选:A【点评】本题考查了指数函数与对数函数的单调性,属于基础题2 【答案】A【解析】解:复数z=由条件复数z=(其中aR,i是虚数单位)的实部与虚部相等,得,18a=3a+6,解得a=3故选:A【点评】本题考查复数的代数形式的混合运算,考查计算能力3 【答案】C【解析】试题分析:将函数的图象向右平移个单位,得的图象,故选C考点:图象的平移.4 【答案】A考点:集合交集,并集和补集【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.5 【答案】B【解析】解法一:,(C为常数),取x=1得,再取x=0得,即得,故选B解法二:,故选B【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用6 【答案】 B 【解析】解析:本题考查三视图与几何体的体积的计算如图该三棱锥是边长为的正方体中的一个四面体,其中,该三棱锥的体积为,选B7 【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4R2=6a2故选B8 【答案】A【解析】解:双曲线的中心在原点,焦点在x轴上,设双曲线的方程为,(a0,b0)由此可得双曲线的渐近线方程为y=x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c=5t(t0)该双曲线的离心率是e=故选A【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题9 【答案】A【解析】试题分析:,对应点在第四象限,故,A选项正确.考点:复数运算10【答案】C【解析】由题意,得甲组中,解得乙组中,所以,所以,故选C11【答案】 D【解析】解:由导函数的图象可知,导函数f(x)的图象在x轴下方,即f(x)0,故原函数为减函数,并且是,递减的速度是先快后慢所以f(x)的图象如图所示f(x)0恒成立,没有依据,故不正确;表示(x1x2)与f(x1)f(x2)异号,即f(x)为减函数故正确;表示(x1x2)与f(x1)f(x2)同号,即f(x)为增函数故不正确,左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故不正确,正确,综上,正确的结论为故选D12【答案】A【解析】解:方程x2+2ax+y2=0(a0)可化为(x+a)2+y2=a2,圆心为(a,0),方程x2+2ax+y2=0(a0)表示的圆关于x轴对称,故选:A【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键二、填空题13【答案】AG 【解析】解:由题意可得A=,G=,由基本不等式可得AG,当且仅当a=b取等号,由题意a,b是互异的负数,故AG故答案是:AG【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题14【答案】 【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,4个点构成平行四边形的概率P=故答案为:【点评】本题考查古典概型及其概率计算公式的应用,是基础题确定基本事件的个数是关键15【答案】【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,恒成立,由1考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件16【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得17【答案】【解析】由题意知,且,所以,则.18【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.三、解答题19【答案】 【解析】证明:(1)BC是圆O的直径,BE是圆O的切线,EBBC又ADBC,ADBE可得BFCDGC,FECGAC,得G是AD的中点,即DG=AGBF=EF(2)连接AO,ABBC是圆O的直径,BAC=90由(1)得:在RtBAE中,F是斜边BE的中点,AF=FB=EF,可得FBA=FAB又OA=OB,ABO=BAOBE是圆O的切线,EBO=90,得EBO=FBA+ABO=FAB+BAO=FAO=90,PAOA,由圆的切线判定定理,得PA是圆O的切线【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题20【答案】 【解析】证明:()在BCE中,BCCF,BC=AD=,BE=3,EC=,在FCE中,CF2=EF2+CE2,EFCE由已知条件知,DC平面EFCB,DCEF,又DC与EC相交于C,EF平面DCE解:()方法一:过点B作BHEF交FE的延长线于H,连接AH由平面ABCD平面BEFC,平面ABCD平面BEFC=BC,ABBC,得AB平面BEFC,从而AHEF所以AHB为二面角AEFC的平面角在RtCEF中,因为EF=2,CF=4EC=CEF=90,由CEBH,得BHE=90,又在RtBHE中,BE=3,由二面角AEFC的平面角AHB=60,在RtAHB中,解得,所以当时,二面角AEFC的大小为60方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系Cxyz设AB=a(a0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0)从而,设平面AEF的法向量为,由得,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得所以当时,二面角AEFC的大小为60【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题21【答案】【解析】解:()PD平面ABCD,ECPD,EC平面ABCD,又BD平面ABCD,ECBD,底面ABCD为正方形,ACBD=N,ACBD,又ACEC=C,AC,EC平面AEC,BD平面AEC,BDAE,异面直线BD与AE所成角的为90()底面ABCD为正方形,BCAD,BC平面PAD,AD平面PAD,BC平面PAD,ECPD,EC平面PAD,PD平面PAD,EC平面PAD,ECBC=C,EC平面BCE,BC平面BCE,平面BCE平面PAD,BE平面BCE,BE平面PAD() 假设平面PAD与平面PAE垂直,作PA中点F,连结DF,PD平面ABCD,AD CD平面ABCD,PDCD,PDAD,PD=AD,F是PA的中点,DFPA,PDF=45,平面PAD平面PAE,平面PAD平面PAE=PA,DF平面PAD,DF平面PAE,DFPE,PDCD,且正方形ABCD中,ADCD,PDAD=D,CD平面PAD又DF平面PAD,DFCD,PD=2EC,ECPD,PE与CD相交,DF平面PDCE,DFPD,这与PDF=45矛盾,假设不成立即平面PAD与平面PAE不垂直【点评】本题主要考查了线面平行和线面垂直的判定定理的运用考查了学生推理能力和空间思维能力22【答案】 【解析】解:,f(x)=x24,由f(x)=x24=0,得x=2,或x=2,x0,3,x=2,当x变化时,f(x),f(x)的变化情况如下表:x0(0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025技术顾问聘用合同书范本
- 敏捷人才发展模式-洞察及研究
- 2025公司租赁合同模板
- 2025股权激励计划合同股权转让操作流程
- 2025工程合同担保书(标准版)
- 冲压返修人员前安全培训课件
- 冲压安全生产培训心得
- 2025年二手房东租赁合同范本
- 2025年河北省农产品采购合同模板
- 冲击波碎石科课件
- 浙江名校协作体(G12)2025年9月2026届高三返校联考物理(含答案)
- 廉租房承包物业合同范本
- 中小学心理健康c证考试试题及答案
- 2025-2026秋季中小学第一学期升旗仪式22周校长演讲稿:第1周 烽火记忆照前路秋风为序启新程
- 污水厂工艺知识培训课件
- 2025秋人教部编版二年级上册语文教学计划
- 科学护肤知识课件
- 2025年黑龙江全国导游人员资格考试(全国导游基础知识、地方导游基础知识)历年参考题库含答案详解(5套)
- 分级护理落实率
- DB4419T 23-2024 建设工程施工无废工地管理规范
- 幼儿园改造提升项目可行性研究报告
评论
0/150
提交评论