




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
方山县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛物线的准线交于点,则的值是( )A B C D2 已知全集U=R,集合M=x|2x12和N=x|x=2k1,k=1,2,的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3个B2个C1个D无穷多个3 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A9B11C13D154 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A1BCD5 (+)2n(nN*)展开式中只有第6项系数最大,则其常数项为( )A120B210C252D456 设l,m,n表示不同的直线,表示不同的平面,给出下列四个命题:若ml,m,则l;若ml,m,则l;若=l,=m,=n,则lmn;若=l,=m,=n,n,则lm其中正确命题的个数是( )A1B2C3D47 函数在一个周期内的图象如图所示,此函数的解析式为( )A B C D8 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372B2024C3136D44959 若方程x2mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是( )A(2,+)B(0,2)C(4,+)D(0,4)10已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=( )A2B6C4D211下列各组函数为同一函数的是( )Af(x)=1;g(x)=Bf(x)=x2;g(x)=Cf(x)=|x|;g(x)=Df(x)=;g(x)=12已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为,则直线的方程为( ) A B C D二、填空题13过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是14已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 x1045f(x)1221下列关于f(x)的命题:函数f(x)的极大值点为0,4;函数f(x)在0,2上是减函数;如果当x1,t时,f(x)的最大值是2,那么t的最大值为4;当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个其中正确命题的序号是15在极坐标系中,曲线C1与C2的方程分别为2cos2=sin与cos=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为16已知sin+cos=,且,则sincos的值为17已知、分别是三内角的对应的三边,若,则的取值范围是_【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想18若“xa”是“x22x30”的充分不必要条件,则a的取值范围为三、解答题19设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=af(x)1(a0且a1)()求k的值;()求g(x)在1,2上的最大值;()当时,g(x)t22mt+1对所有的x1,1及m1,1恒成立,求实数t的取值范围20【南师附中2017届高三模拟二】已知函数(1)试讨论的单调性;(2)证明:对于正数,存在正数,使得当时,有;(3)设(1)中的的最大值为,求得最大值21已知函数(1)求f(x)的周期(2)当时,求f(x)的最大值、最小值及对应的x值22如图,已知椭圆C: +y2=1,点B坐标为(0,1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上()求直线AB的方程()若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OMON为定值23(本题满分15分) 已知函数,当时,恒成立(1)若,求实数的取值范围;(2)若,当时,求的最大值【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力24已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:22cos4sin+6=0(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求C1MN的面积 方山县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.2 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为MN,又由M=x|2x12得1x3,即M=x|1x3,在此范围内的奇数有1和3所以集合MN=1,3共有2个元素,故选B3 【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答4 【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为因此可知:A,B,D皆有可能,而1,故C不可能故选C【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键5 【答案】 B【解析】【专题】二项式定理【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项【解答】解:由已知(+)2n(nN*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项6 【答案】 B【解析】解:若ml,m,则由直线与平面垂直的判定定理,得l,故正确;若ml,m,则l或l,故错误;如图,在正方体ABCDA1B1C1D1中,平面ABB1A1平面ABCD=AB,平面ABB1A1平面BCC1B1=BB1,平面ABCD平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若=l,=m,=n,则lmn不成立,故是假命题;若=l,=m,=n,n,则由=n知,n且n,由n及n,=m,得nm,同理nl,故ml,故命题正确故选:B【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养7 【答案】B【解析】考点:三角函数的图象与性质8 【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法这类三角形共有473=1372个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点这类三角形共有42121=1764个综上可知,可得不同三角形的个数为1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题9 【答案】C【解析】解:令f(x)=x2mx+3,若方程x2mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1m+30,解得:m(4,+),故选:C【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档10【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题11【答案】C【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为x|x0,定义域不同,故不是相同函数;B、函数f(x)的定义域为R,g(x)的定义域为x|x2,定义域不同,故不是相同函数;C、因为,故两函数相同;D、函数f(x)的定义域为x|x1,函数g(x)的定义域为x|x1或x1,定义域不同,故不是相同函数综上可得,C项正确故选:C12【答案】D 【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即,选D二、填空题13【答案】 【解析】解:抛物线C方程为y2=4x,可得它的焦点为F(1,0),设直线l方程为y=k(x1),由,消去x得设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=4|AF|=3|BF|,y1+3y2=0,可得y1=3y2,代入得2y2=,且3y22=4,消去y2得k2=3,解之得k=故答案为:【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题14【答案】 【解析】解:由导数图象可知,当1x0或2x4时,f(x)0,函数单调递增,当0x2或4x5,f(x)0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以正确;正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x1,t函数f(x)的最大值是4,当2t5,所以t的最大值为5,所以不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)a有几个零点,所以不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)1或1f(2)2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以正确,综上正确的命题序号为故答案为:【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键15【答案】(1,2) 【解析】解:由2cos2=sin,得:22cos2=sin,即y=2x2由cos=1,得x=1联立,解得:曲线C1与C2交点的直角坐标为(1,2)故答案为:(1,2)【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题16【答案】 【解析】解:sin+cos=,sin2+2sincos+cos2=,2sincos=1=,且sincos,sincos=故答案为:17【答案】 【解析】18【答案】a1 【解析】解:由x22x30得x3或x1,若“xa”是“x22x30”的充分不必要条件,则a1,故答案为:a1【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键三、解答题19【答案】 【解析】解:()由f(x)=f(x)得 kx22x=kx22x,k=0()g(x)=af(x)1=a2x1=(a2)x1当a21,即a1时,g(x)=(a2)x1在1,2上为增函数,g(x)最大值为g(2)=a41当a21,即0a1时,g(x)=(a2)x在1,2上为减函数,g(x)最大值为()由()得g(x)在x1,1上的最大值为,1t22mt+1即t22mt0在1,1上恒成立令h(m)=2mt+t2,即所以t(,202,+)【点评】本题考查函数的奇偶性,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题20【答案】(1)证明过程如解析;(2)对于正数,存在正数,使得当时,有;(3)的最大值为【解析】【试题分析】(1)先对函数进行求导,再对导函数的值的符号进行分析,进而做出判断;(2)先求出函数值,进而分和两种情形进行分析讨论,推断出存在使得,从而证得当时,有成立;(3)借助(2)的结论在上有最小值为,然后分两种情形探求的解析表达式和最大值。证明:(1)由于,且,故在上单调递减,在上单调递增(3)由(2)知在上的最小值为当时,则是方程满足的实根,即满足的实根,所以又在上单调递增,故当时,由于,故此时,综上所述,的最大值为21【答案】 【解析】解:(1)函数函数f(x)=2sin(2x+)f(x)的周期T=即T=(2),1sin(2x+)2最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业文化遗产可视化知识图谱构建
- 煤气化渣二氧化硅对聚丙烯除味性能的研究与应用
- 公园生活垃圾管理办法
- 十年职场经验分享与职业规划
- 江西涉密采购管理办法
- 通信工程技术规范
- 积极心理学应用:心理健康教育长效机制构建
- 利率市场化改革对中小企业融资效率的影响机制研究
- 基于乘客决策行为的城市轨道交通系统韧性评估研究
- 2025年 重大安全事故
- 中职《接触器联锁正反转控制线路》公开课PPT
- 05-衣之镖-辅行诀汤液经法用药图释义
- LS/T 3240-2012汤圆用水磨白糯米粉
- GB/T 15298-1994电子设备用电位器第一部分:总规范
- 新教科版六下科学4-6《生命体中的化学变化》教案
- 2023高中学业水平合格性考试历史重点知识点归纳总结(复习必背)
- 自然指数NatureIndex(NI)收录的68种自然科学类期刊
- 手术报告审批单
- 《专业导论光电信息科学与工程》教学大纲
- 广东省湛江市各县区乡镇行政村村庄村名明细
- 少儿美术国画- 少儿希望 《紫藤课件》
评论
0/150
提交评论