




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
历城区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.12 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若m,n,则mn;若,m,则m;其中正确命题的序号是( )ABCD3 已知f(x)是定义在R上周期为2的奇函数,当x(0,1)时,f(x)=3x1,则f(log35)=( )ABC4D4 在长方体ABCDA1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是( )ABCD 5 若命题p:xR,x20,命题q:xR,x,则下列说法正确的是( )A命题pq是假命题B命题p(q)是真命题C命题pq是真命题D命题p(q)是假命题6 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A. B4C.D7 定义运算:例如,则函数的值域为( )A B C D8 如图,已知双曲线=1(a0,b0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为( )Ay=xBy=3xCy=xDy=x9 如图所示,在平行六面体ABCDA1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则( ) Ax=Bx=Cx=Dx=10对于函数f(x),若a,b,cR,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )ACD11棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )AB18CD12已知|=3,|=1,与的夹角为,那么|4|等于( )A2BCD13二、填空题13在极坐标系中,曲线C1与C2的方程分别为2cos2=sin与cos=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为14如图,在棱长为1的正方体ABCDA1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为15下列说法中,正确的是(填序号)若集合A=x|kx2+4x+4=0中只有一个元素,则k=1;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称;y=()x是增函数;定义在R上的奇函数f(x)有f(x)f(x)016设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:MPOM0;OM0MP;OMMP0;MP0OM,其中正确的是(把所有正确的序号都填上)1717已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称18考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于三、解答题19若点(p,q),在|p|3,|q|3中按均匀分布出现(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程x2+2pxq2+1=0有两个实数根的概率20(本小题满分12分)已知函数.(1)当时,求函数的值域;(2)已知,函数,若函数在区间上是增函数,求的最大值21已知函数f(x)=lnxkx+1(kR)()若x轴是曲线f(x)=lnxkx+1一条切线,求k的值;()若f(x)0恒成立,试确定实数k的取值范围22(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问卷调查,得到了如下的列联表:患心肺疾病患心肺疾病合计男20525女101525合计302050(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量,判断心肺疾病与性别是否有关?下面的临界值表供参考:(参考公式:,其中)23已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0)(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程24如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,ABC=,OA底面ABCD,OA=2,M为OA的中点,N为BC的中点()证明:直线MN平面OCD;()求异面直线AB与MD所成角的大小;()求点B到平面OCD的距离 历城区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.2 【答案】B【解析】解:由m、n是两条不同的直线,是三个不同的平面:在中:若m,n,则由直线与平面垂直得mn,故正确;在中:若,则,m,由直线垂直于平面的性质定理得m,故正确;在中:若m,n,则由直线与平面垂直的性质定理得mn,故正确;在中:若,m,则m或m,故错误故选:B3 【答案】B【解析】解:f(x)是定义在R上周期为2的奇函数,f(log35)=f(log352)=f(log3),x(0,1)时,f(x)=3x1f(log3)故选:B4 【答案】C【解析】解:如图,设A1C1B1D1=O1,B1D1A1O1,B1D1AA1,B1D1平面AA1O1,故平面AA1O1面AB1D1,交线为AO1,在面AA1O1内过B1作B1HAO1于H,则易知A1H的长即是点A1到截面AB1D1的距离,在RtA1O1A中,A1O1=,AO1=3,由A1O1A1A=hAO1,可得A1H=,故选:C【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题5 【答案】 B【解析】解:xR,x20,即不等式x20有解,命题p是真命题;x0时,x无解,命题q是假命题;pq为真命题,pq是假命题,q是真命题,p(q)是真命题,p(q)是真命题;故选:B【点评】考查真命题,假命题的概念,以及pq,pq,q的真假和p,q真假的关系6 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V23221,故选D.7 【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题. 8 【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|PF2|=2a,即有m(n1)=2a,由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m1=n,由解得a=1,由|F1F2|=4,则c=2,b=,由双曲线=1的渐近线方程为y=x,即有渐近线方程为y=x故选D【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键9 【答案】A【解析】解:根据题意,得;=+(+)=+=+,又=+x+y,x=,y=,故选:A【点评】本题考查了空间向量的应用问题,是基础题目10【答案】D【解析】解:由题意可得f(a)+f(b)f(c)对于a,b,cR都恒成立,由于f(x)=1+,当t1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件当t10,f(x)在R上是减函数,1f(a)1+t1=t,同理1f(b)t,1f(c)t,由f(a)+f(b)f(c),可得 2t,解得1t2当t10,f(x)在R上是增函数,tf(a)1,同理tf(b)1,tf(c)1,由f(a)+f(b)f(c),可得 2t1,解得1t综上可得,t2,故实数t的取值范围是,2,故选D【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题11【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:322+3()+=,故选:D12【答案】C【解析】解:|=3,|=1,与的夹角为,可得=|cos,=31=,即有|4|=故选:C【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题二、填空题13【答案】(1,2) 【解析】解:由2cos2=sin,得:22cos2=sin,即y=2x2由cos=1,得x=1联立,解得:曲线C1与C2交点的直角坐标为(1,2)故答案为:(1,2)【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题14【答案】 【解析】解:如图,将AM平移到B1E,NC平移到B1F,则EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=cosEB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题15【答案】 【解析】解:若集合A=x|kx2+4x+4=0中只有一个元素,则k=1或k=0,故错误;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称,故正确;y=()x是减函数,故错误;定义在R上的奇函数f(x)有f(x)f(x)0,故正确故答案为:【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档16【答案】 【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,OM0MP故答案为:【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小17【答案】 【解析】解:f(x)=axg(x)(a0且a1),=ax,又f(x)g(x)f(x)g(x),()=0,=ax是增函数,a1,+=a1+a1=,解得a=或a=2综上得a=2数列为2n数列的前n项和大于62,2+22+23+2n=2n+1262,即2n+164=26,n+16,解得n5n的最小值为6故答案为:6【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题18【答案】 【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,4个点构成平行四边形的概率P=故答案为:【点评】本题考查古典概型及其概率计算公式的应用,是基础题确定基本事件的个数是关键三、解答题19【答案】 【解析】解:(1)根据题意,点(p,q),在|p|3,|q|3中,即在如图的正方形区域,其中p、q都是整数的点有66=36个,点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1x3,1y3,点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,所以点M(x,y)落在上述区域的概率P1=;(2)|p|3,|q|3表示如图的正方形区域,易得其面积为36;若方程x2+2pxq2+1=0有两个实数根,则有=(2p)24(q2+1)0,解可得p2+q21,为如图所示正方形中圆以外的区域,其面积为36,即方程x2+2pxq2+1=0有两个实数根的概率,P2=【点评】本题考查几何概型、古典概型的计算,解题时注意区分两种概率的异同点20【答案】(1);(2)【解析】试题分析:(1)化简,结合取值范围可得值域为;(2)易得和,由在上是增函数,的最大值为.考点:三角函数的图象与性质.21【答案】 【解析】解:(1)函数f(x)的定义域为(0,+),f(x)=k=0,x=,由ln1+1=0,可得k=1;(2)当k0时,f(x)=k0,f(x)在(0,+)上是增函数;当k0时,若x(0,)时,有f(x)0,若x(,+)时,有f(x)0,则f(x)在(0,)上是增函数,在(,+)上是减函数k0时,f(x)在(0,+)上是增函数,而f(1)=1k0,f(x)0不成立,故k0,f(x)的最大值为f(),要使f(x)0恒成立,则f()0即可,即lnk0,得k1【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识22【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.23【答案】 【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是椭圆经过点D(2,0),左焦点为,a=2,可得b=1因此,椭圆的标准方程为(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,点P(x0,y0)在椭圆上,可得,化简整理得,由此可得线段PA中点M的轨迹方程是【点评】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河南新乡医学院辅导员招聘12人模拟试卷(含答案详解)
- 2025包头市昆都仑区发展和改革委员会竞争性比选工作人员的模拟试卷及一套答案详解
- 2025海南定安县建设工程质量安全监督站就业见习基地见习生招录5人模拟试卷及答案详解(名校卷)
- 2025安徽池州市贵池区招聘教师24人考前自测高频考点模拟试题及答案详解(有一套)
- 2025广西姆洛甲文化旅游投资有限公司招聘工作人员1人考前自测高频考点模拟试题及完整答案详解一套
- 2025广东越秀区华乐街道办事处招聘合同制工作人员1人模拟试卷及一套完整答案详解
- 2025河南郑州普海外国语学校招聘24人模拟试卷及一套答案详解
- 2025年甘肃省兰州市西固区中医医院招聘12人考前自测高频考点模拟试题及一套完整答案详解
- 2025广西桂林市灵川县发展和改革局公开招聘6人模拟试卷附答案详解(完整版)
- 2025年中国地质调查局廊坊自然资源综合调查中心公开招聘32人模拟试卷附答案详解(典型题)
- 2025年健康管理师试题及答案
- 2026年中考数学压轴题专项练习-四边形中的新定义问题(学生版+名师详解版)
- logo安装施工方案
- 四川能投合江电力有限公司员工招聘考试参考题库及答案解析
- 幕墙玻璃更换施工安全技术方案
- 焊工岗位安全培训课件
- 2025年地方病防治科地方病防控策略考核试卷答案及解析
- 2025年山西省政府采购评审专家考试真题库(带答案)
- 银行贵金属知识培训课件
- 楼道秩序遵守课件
- 情商课件教学课件
评论
0/150
提交评论