




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、错位相减法设数列的等比数列,数列是等差数列,则数列的前项和求解,均可用错位相减法。例1;设是等差数列,是各项都为正数的等比数列,且,()求,的通项公式;()求数列的前n项和例2;在数列中,其中()求数列的通项公式;()求数列的前项和;二、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1) (2)(3)等。例3:; 求数列的前n项和.数列求和(错位相减、裂项相消法)专题训练1、2、已知等差数列满足:,.的前n项和为.()求 及;()令(),求数列的前n项和.3、已知等差数列的前3项和为6,前8项和为-4。()求数列的通项公式;w_w w. k#s5_u.c o*()设,求数列的前n项和4、已知等差数列满足:,的前n项和为()求及;()令bn=(nN*),求数列的前n项和5、已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。()求数列的通项公式;()设,是数列的前n项和,求使得对所有都成立的最小正整数m;6、(本小题满分12分)等比数列的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上. (1)求r的值; (2)当b=2时,记 求数列的前项和数列求和专项练习1、2、求数列,的前项和. 3、求数列,的前n项和S4、已知数列的通项公式为 求它的前n项的和.5、已知数列满足:的前n项和 .6、在数列中, 证明数列是等差数列,并求出Sn的表达式.7、已知等差数列满足:,.的前n项和为.(1)求 及;(2)令(),求数列的前n项和.8、已知数列中,且当时,;(1)求,(2)求的前项和9、已知在数列中,(1)设,求数列的通项公式(2)求数列的前项和10、已知等差数列的前3项和为6,前8项和为-4。(1)求数列的通项公式;w_w w. k#s5_u.c o*(2)设,求数列的前n项和11、已知等差数列满足:,的前n项和为(1)求及;(2)令bn=(nN*),求数列的前n项和12、已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。(1)求数列的通项公式;(2)设,是数列的前n项和,求使得对所有都成立的最小正整数m;13、已知数列的各项为正数,其前n项和,(I)求之间的关系式,并求的通项公式;(II)求证14、本小题满分12分)等比数列的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上. (1)求r的值; (2)当b=2时,记 求数列的前项和15、数列的前n项和为,且满足(I)求与的关系式,并求的通项公式;(II)求和16、(1)设是各项均不为零的()项等差数列,且公差,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列(i)当时,求的数值;(ii)求的所有可能值(2)求证:对于给定的正整数(),存在一个各项及公差均不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列17、已知函数f(x)m2xt的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列an的前n项和,nN*.(1)求Sn及an;(2)若数列cn满足cn6nann,求数列cn的前n项和Tn.18、将n2个数排成n行n列的一个数阵:a11 a12 a13 a1na21 a22 a23 a2na31 a32 a33 a3n an1 an2 an3 ann已知a112,a13a611,该数阵第一列的n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东广州市增城区教育局“粤聚英才粤见未来”招聘广州增城外国语实验中学教师10人模拟试卷附答案详解(典型题)
- 2025广东云浮市新兴县“粤聚英才粤见未来”招聘教育人才11人(广西师范大学专场)模拟试卷及参考答案详解一套
- 2025贵州黔东南州剑河县农村集体经济组织选聘职业经理人(总经理)模拟试卷及答案详解(名校卷)
- 2025贵州安顺市社会科学界联合会招聘公益性岗位人员考前自测高频考点模拟试题及答案详解一套
- 2025劳动合同续签申请书
- 2025农商行个人消费贷款合同
- 2025福建厦门市集美区英村(兑山)幼儿园非在编教职工招聘4人考前自测高频考点模拟试题附答案详解(完整版)
- 2025年个体技术股权转让合同
- 2025贵州省妇幼保健院第十三届贵州人才博览会引才模拟试卷及一套完整答案详解
- 2025呼伦贝尔扎兰屯市社会福利中心护理员招聘考前自测高频考点模拟试题附答案详解(典型题)
- 第三章转录及转录调控
- 酿造车间绩效考核制度
- GB/T 7193-2008不饱和聚酯树脂试验方法
- GB/T 3810.3-2016陶瓷砖试验方法第3部分:吸水率、显气孔率、表观相对密度和容重的测定
- 部编本语文五年级上册第一单元教材解读
- 医院放疗科护理记录(模板)
- 应急管理行业解决方案及应用
- 7.4.2超几何分布 课件(共14张PPT)
- 高中地理 选必一 地质构造与地貌 PPT 课件
- 含硫化氢油气井井下作业推荐作法
- 脑电图判读异常脑电图课件
评论
0/150
提交评论