梅列区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
梅列区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
梅列区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
梅列区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
梅列区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

梅列区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛物线的准线交于点,则的值是( )A B C D2 函数f(x)=,则f(1)的值为( )A1B2C3D43 已知偶函数f(x)=loga|xb|在(,0)上单调递增,则f(a+1)与f(b+2)的大小关系是( )Af(a+1)f(b+2)Bf(a+1)f(b+2)Cf(a+1)f(b+2)Df(a+1)f(b+2)4 若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A34种B35种C120种D140种6 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372B2024C3136D44957 下列函数中,为奇函数的是( )Ay=x+1By=x2Cy=2xDy=x|x|8 ABC的三内角A,B,C所对边长分别是a,b,c,设向量,若,则角B的大小为( )ABCD9 的大小关系为( )ABC.D10已知双曲线=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=x,则该双曲线的方程为( )A=1By2=1Cx2=1D=111已知向量=(1,2),=(m,1),如果向量与平行,则m的值为( )ABC2D212已知向量与的夹角为60,|=2,|=6,则2在方向上的投影为( )A1B2C3D4二、填空题13若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k=14在(1+2x)10的展开式中,x2项的系数为(结果用数值表示)15如图所示,在三棱锥CABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EFAB,则EF与CD所成的角是16若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力17若圆与双曲线C:的渐近线相切,则_;双曲线C的渐近线方程是_18已知i是虚数单位,且满足i2=1,aR,复数z=(a2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)三、解答题19已知函数f(x)=sin(x+)+1(0,)的最小正周期为,图象过点P(0,1)()求函数f(x)的解析式;()设函数 g(x)=f(x)+cos2x1,将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值20(本小题满分12分)1111已知函数(1)若,求函数的极值和单调区间;(2)若在区间上至少存在一点,使得成立,求实数的取值范围21(本小题12分)设是等差数列,是各项都为正数的等比数列,且,.111(1)求,的通项公式;(2)求数列的前项和.22某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米()求底面积并用含x的表达式表示池壁面积;()怎样设计水池能使总造价最低?最低造价是多少?23【无锡市2018届高三上期中基础性检测】已知函数(1)当时,求的单调区间;(2)令,区间,为自然对数的底数。()若函数在区间上有两个极值,求实数的取值范围;()设函数在区间上的两个极值分别为和,求证:.24如图,四面体ABCD中,平面ABC平面BCD,AC=AB,CB=CD,DCB=120,点E在BD上,且CE=DE()求证:ABCE;()若AC=CE,求二面角ACDB的余弦值梅列区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.2 【答案】A【解析】解:由题意可得f(1)=f(1+3)=f(2)=log22=1故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题3 【答案】B【解析】解:y=loga|xb|是偶函数loga|xb|=loga|xb|xb|=|xb|x22bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=loga|x|当x(,0)时,由于内层函数是一个减函数,又偶函数y=loga|xb|在区间(,0)上递增故外层函数是减函数,故可得0a1综上得0a1,b=0a+1b+2,而函数f(x)=loga|xb|在(0,+)上单调递减f(a+1)f(b+2)故选B4 【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A5 【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有=34种故选:A【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题6 【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法这类三角形共有473=1372个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点这类三角形共有42121=1764个综上可知,可得不同三角形的个数为1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题7 【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x|x|是奇函数,满足条件,故选:D【点评】本题主要考查函数的奇偶性的判断,属于基础题8 【答案】B【解析】解:若,则(a+b)(sinBsinA)sinC(a+c)=0,由正弦定理可得:(a+b)(ba)c(a+c)=0,化为a2+c2b2=ac,cosB=,B(0,),B=,故选:B【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题9 【答案】B【解析】试题分析:由于,因为,所以,又,考点:实数的大小比较.10【答案】B【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=x,则有a2+b2=c2=10和=,解得a=3,b=1所以双曲线的方程为:y2=1故选B【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用属于基础题11【答案】B【解析】解:向量,向量与平行,可得2m=1解得m=故选:B12【答案】A【解析】解:向量与的夹角为60,|=2,|=6,(2)=2=22262cos60=2,2在方向上的投影为=故选:A【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目二、填空题13【答案】1或0 【解析】解:满足约束条件的可行域如下图阴影部分所示:kxy+10表示地(0,1)点的直线kxy+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kxy+1=0与y轴垂直,此时k=0或直线kxy+1=0与y=x垂直,此时k=1综上k=1或0故答案为:1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kxy+1=0与y轴垂直或与y=x垂直,是解答的关键14【答案】180 【解析】解:由二项式定理的通项公式Tr+1=Cnranr br可设含x2项的项是Tr+1=C7r (2x)r可知r=2,所以系数为C1024=180,故答案为:180【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等15【答案】30 【解析】解:取AD的中点G,连接EG,GF则EGDC=2,GFAB=1,故GEF即为EF与CD所成的角又FEABFEGF在RtEFG中EG=2,GF=1故GEF=30故答案为:30【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了16【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得17【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1因为相切,所以所以双曲线C的渐近线方程是:故答案为:,18【答案】充分不必要 【解析】解:复数z=(a2i)(1+i)=a+2+(a2)i,在复平面内对应的点M的坐标是(a+2,a2),若点在第四象限则a+20,a20,2a2,“a=1”是“点M在第四象限”的充分不必要条件,故答案为:充分不必要【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题三、解答题19【答案】 【解析】解:()函数f(x)=sin(x+)+1(0,)的最小正周期为,=2,又由函数f(x)的图象过点P(0,1),sin=0,=0,函数f(x)=sin2x+1;()函数 g(x)=f(x)+cos2x1=sin2x+cos2x=sin(2x+),将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得函数的解析式是:h(x)=sin2(x)+=sin(2x),x(0,m),2x(,2m),又由h(x)在区间(0,m)内是单调函数,2m,即m,即实数m的最大值为【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和性质,是解答的关键20【答案】(1)极小值为,单调递增区间为,单调递减区间为;(2)【解析】试题分析:(1)由令再利用导数工具可得:极小值和单调区间;(2)求导并令,再将命题转化为在区间上的最小值小于当,即时,恒成立,即在区间上单调递减,再利用导数工具对的取值进行分类讨论.111若,则对成立,所以在区间上单调递减,则在区间上的最小值为,显然,在区间的最小值小于0不成立若,即时,则有-0+极小值所以在区间上的最小值为,由,得,解得,即,综上,由可知,符合题意12分考点:1、函数的极值;2、函数的单调性;3、函数与不等式.【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用.21【答案】(1);(2).【解析】(2),6分,.8分-得,10分所以.12分考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设的公差为,的公比为,根据等差数列和等比数列的通项公式,联立方程求得和,进而可得,的通项公式;(2)数列的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和.22【答案】 【解析】解:()设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则()设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元答:x=40时,总造价最低为297600元23【答案】(1)增区间,减区间,(2)详见解析【解析】试题分析:(1)求导写出单调区间;(2)()函数在区间D上有两个极值,等价于在上有两个不同的零点,令,得,通过求导分析得的范围为;(),得,由分式恒等变换得,得,要证明,只需证,即证,令,通过求导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论