




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.5 可压缩性流体 一元稳定流动基本理论 1.5.1 绝热流动的全能量方程及其应用 1.5.1.1 全能量方 程 对于不可压缩性流体, 为定值,一元稳定流动全能量 方程为: 上式说明:不可压缩流体沿流程各个断面上,单位质量流 体的压力能与动能之和相等。 同时表明:不可压缩流体在不计位能时,只有压力能和 动能两种能量。 常数 对于可压缩性流体,可根据气体状态变化过程来确定 与 之间的函数关系。 对于绝热过程, 与 之间服从函数关系: 根据相关定律进而可得到全能量方程为 : 常数 此式即为可压缩流体绝热流动的全能量方程,亦称 为绝热流动的柏努利方程。 它与不可压缩流体全能量方程相比较,由于绝热变 化而使压力能增大 倍。 式中:k绝热指数。其大小决定于气体分子结构 单原子气体:k=1.66; 双原子气体(包括空气):k=1.4; 多原子气体(包括过热蒸汽):k=1.33; 饱和蒸汽:k=1.135 所谓全能方程,是指能量中包括气体的内能e 。 全能量方程可改写成如下形式: 所以,全能量方程的含义是: 绝热流动中,任一断面上单位质量气体所具有的压 力能、动能与内能之和为一常数。 或者说三种能量之间可以互相转化,但其和保持不 变。 对于任意1,2两断面来说,绝热的全能量方程为: 或 : 1.5.1.2 用焓表示的全能方程 在气体动力学中,常用焓为参数来表示全能方程。从热力学中知道, 压力能与内能之和为焓,即: 所以,用焓表示的全能方程为: 因为理想气体的焓与定压比热 及绝对温度T之间,具有如下关系: 如果将 用温度T表示时,则上式为: 或: u 上式说明气体(可压缩)流动与不可压缩液体流动有 显著区别:在不可压缩液流中,只有存在热交换才能引起 液体温度的改变,而有效断面变化所造成的速度改变,并 不引起液体温度的改变;但在可压缩气流中则不然,其温 度随流速变化而改变,当流速v小时,则温度T较高,而当 v增大时,则T便降低。 u 例如高压气体经管道流入背压较低的空间,由于压差 很大,管中流速很高,因此气流温度便显著下降,所以管 道表面常出现结霜现象,其实质原因就在这里。 1.5.2音速 o1.5.2.1音速 声音的来源是由于物体振动。当物体在可压缩介 质中振动时,这种振动便引起介质的压力和密度的微 弱变化,通常称之为介质的微弱扰动或弱压力波。这 种扰动在介质中依次传递下去,就是声音的传播过程 。因而, u音速: 是指微弱扰动在可压缩介质中的传播速度。 现在来推导音速公式,如图(a)所示,在充满静止气体的直管 一端,有一面积为A的活塞。当活塞静止时,管中静止气体的 压力和密度分别为p和;当使活塞以微小速度u向前运动时, 而依次压缩其前部的气体,经过t时间后见图(b),这种压缩 的传播在管中形成一个扰动面m-n(或称扰动波头),其推进速度 即为音速a,扰动后的压力增量为dp、密度增量为d;图(c) 为经过时间t+dt后的情况。按上图所示情况,根据质量守恒和 动量原理,来推导音速公式: l(1)质量守恒:在dt时间内,波头m-n所扰动掠过的静止气体的 质量为 。在dt时间后这部分质量由于扰动而被压缩 ,其密度为 ,其体积为 ,故质量为 ,根据质量守恒则必须 ,由此可得 (1) (2)动量守恒:由于质量 在时间dt前是静止的,因而其运动 速度u=0,但在时间dt后,由于活塞的移动而被压缩成 ,同 时开始获得与活塞运动相同的速度u。 这块气体其内侧压力为 ,而外侧为静止气体其压力为 。根据动量原理Ft=m(u2-u1), 有: 简化得: 由式及消去u,可得 (2) u 由于微弱扰动, 为极小值,故 与1相比则为 高阶微量,故可略去,于是音速公式可表示为 u 上式表明,音速a决定于 ,其物理意义是:单位 密度改变所需要的压强改变。此压强改变愈小,即音速a愈 小,则说明气体是容易压缩的,反之音速a愈大,则不容易 压缩。 u 因此,音速可以作为一种表征流体压缩性的指标。 (3) u 在实际应用中,必须根据气体状态变化过程所服从的状 态参数关系来确定其音速。例如绝热过程 ,则 ,所以 绝热过程的音速: 或 (5) u 由上两式可以看出,气体的音速决定于压力与密度的比 值,即决定于开尔文温度。 因此绝热过程空气中的音速公式为: 在海平面上(常指地球表面),15时空气中音速为: (4) (6) 1.5.2.2 滞止参数 o滞止参数:介质处于静止(如贮气罐中的气体)或滞止( 如气体撞于壁面或皮托管口上)时,其速度 v0 的参数 ,称为滞止参数,一般以 等来表示。 o 若可压缩气体从某容器中流出,断面11取在容器内 ,则各参数为滞止参数;断面22代表容器所连接管道上 任一断面(去掉下脚标2)。根据全能量方程有: l式中: 称为滞止介质音速; 称为流动介质音速或当地音速 。 (7) u 从上式可以看出,对于滞止参数为定值情 况下,空气中音速 (即当地音速)的大小取决 于气流速度v (即当地速度)。当气流速度沿流 动方向增大时,气流温度 T必下降,因而当地 音速必减小。由于当地速度 v 的存在,在同一 系统中当地音速 总是小于滞止音速 的。 1.5.2.3 马赫数及参数比 基于上述,气流速度v若大,则当地音速便减小, 从音速物理意义知,音速a 越小则流体越容易压缩。这 就是说:气流速度v越大时,则压缩现象便越显著。马 赫首先将影响压缩效果的v与a两个物理量联系了起来, 取v与a之比的无量纲数,并以Ma表示,即 Ma = u马赫数Ma:是指扰动源(气流)的运动速度与当地音速 的比值。 Ma1的流动称为超音速流动。 利用(7)式的第二式,可以求出温度比为 借助于理想气体状态方程和绝热方程,经过演算后,可得 即有(8) (9) u于是可得各参数比与马赫数的关系为: l 上式表示了各参数比,都是马赫数Ma的函数。 l 显然,随Ma数的增大(即气流速度v增大),则气流的温 度T、压强p和密度 便减小。因此可以说Ma数是判断压 缩性影响程度的指标。 (10) 1.5.3气流参数与流通截面的关系、临界参 数 1.5.3.1气流速度与断面关系 从连续性方程知道,不可压缩流体沿管道流动时, 其速度与断面积成反比。但在可压缩气流中,速度与面积 之间存在什么关系?这就是我们将要研究的内容。 将已求得的连续性方程 vA=C(常数)微分,则得 v/a = Ma 由: 得: u对上式进行分析,可得出下列重要结论: (1) 若Ma1,即va为超音速流动。这时(Ma2-1)0,则 dv与dA符号相同。这表明,气体作超音速流动时,速度与 断面成正比变化关系,即速度随断面的减小而减小,随断 面的增大而增大(如图b所示)。 这种速度与断面成正比变化规律,是超音速流动同 亚音速流动的原则性区别。这两种截然相反的规律,是 可压缩流体在两种流动中,其膨胀程度与速度变化之间 ,具有不同规律所造成的。下面来阐明一下这个道理: p 1.5.3.2密度与速度的关系 由 、音速公式及Ma数关系,可导出: l 对上式进行分析,可得如下重要物理概念: 1)当Ma1 时,Ma2远远大于1,则上式表明密度的相对变化 (d )远远大于速度的相对变化(dv/v),即密度变化 比速度变化来的快。 可见,在密度相对变化的特性上,超音速与亚音速有 着显著的差别。 1.5.3.3速度与单位面积质量流量的关系 p 就单位面积的质量流量( v)来说,其微分为: 所以,单位面积的质量流量的相对变化,则为: 将密度变化与速度变化关系式代入,可得: u对此式进行讨论,可得如下结论: 当Ma0,则 与dv符号相同, 随v的增大而增大,随v的降低而减小。因此当 时 , , 根据连续性程 ,则必有 A1A2。所以亚音速流动中速度与断面成反比变化。 当Ma1时,(1-Ma2)a流入扩张管道见图a,由于断面扩 大,气流膨胀流速增大。因此速度仍为超音速,且越来越大 。这说明不会出现音速,也就不可能有最大临界断面; 反之,如果气流以亚音速va流入扩张管道见图b,由于 断面的扩大而使流速降低。因此速度仍为亚音速,永远不会 达到音速。这就证明了临界断面只能是最小断面。 根据分析:对于初始断面为亚音速的一股收缩形气流( 见图a),不可能得到超音速流动,最多是在收缩管出口 断面上达到音速。因为在收缩管中间断面上不可能有dA=0 的最小断面。 u 为了得到超音速气流,可使亚音速气流流经收缩管,并使其在最小 断面上达到音速,然后再进入扩张管,满足气流的进一步膨胀增速,便 可获得超音速气流。 p 这就确定了从亚音速获得超音速的喷管(见图b),此种喷管为拉 伐尔(Laval)首先采用,故称为拉伐尔喷管。 p 拉伐尔喷管是由收缩段、喉管(即临界断面)及扩张段三部分所组 成。它是使气流从亚音速到超音速的一种喷管。 p 在图c上表示了沿拉伐尔管长度方向上,断面A、速度v、压力p的变 化特性。 (2)临界参数比 在临界断面 上马赫数 Ma=1,代入 式(10)中可 得各临界参数 与滞止参数之 比为: (11) n上式表明,临界参数只与气体绝热指数及滞止参数 有关。 n对于空气k=1.4,代入上式则有: Te=0.834T0 pe=0.528p0 =0.634 ae=0.915a0 1.5.4 高压气体经管嘴的流动 o布袋除尘器中的反吹喷嘴、吹芯机中的 吹砂孔等都是高压气体经收缩管嘴、孔 口的流动问题。 如图所示,容器尺寸比 管嘴或孔口的口径大得多, 故可以认为v0=0,即容器中 气体处于滞止状态,其参数 以p0, ,T0,a0等表示。高 压气体是经过断面积为A的 出口,流到参数为p, ,T 的外部介质中。 u 经管嘴或孔口流动的气体动力学问题,有下述两种情 况: (1)在滞止参数、外部介质参数以及出口断面积已知时 ,计算出口速度v 和质量流量Qm;(校核) (2)在滞止及外部介质参数已知条件下,按所需要的质 量流量,来设计出口尺寸。(设计) l 在这类问题中流速较高,远远大于热量的传递速度, 所以均按绝热过程处理。 列容器中和出口两断面的全能量方程: 注意到 的关系,可得出口速度为 或 式中 称为压强比。 上式表明,出口速度只决定于滞止参数p0,0 (或T0)以及外部介质压强 p。 计算质量流量时,依 并将出口 速度及密度代入,则得 出口面积为: 需要指出的是:速度、质量流量及出口面积的公式 在下列条件下才能适用于计算: 对于空气: 即: 对于过热蒸汽: 即: 而在 的范围中,出口速度仍为音速,质 量流量Qm一直保持其最大值。 例1.已知压缩空气罐中压缩空气的压强p0为160000 Pa,温度t0为57。当空气经渐缩管嘴流向压强 p 为100000Pa的反压室时,若不计能量损失,求管 嘴出口处气流的流速和当地音速。(注:气体常 数R=8314 J/(kmolK), 空气分子量M=29 kg/kmol, 绝热指数k=1.4) 解:确定压强比 可知属于亚音速气流。 所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 以公司角度写团建活动方案
- 仰天山研学活动方案
- 任性贷以旧换新活动方案
- 企业产品活动方案
- 企业全员活动方案
- 企业写作培训活动方案
- 企业单位公司年会活动方案
- 企业咖啡品鉴活动方案
- 企业垂钓活动方案
- 企业开展捐书活动方案
- 关于公司流程管理制度
- 国开2025年《中华民族共同体概论》形考作业1-4终考答案
- 2025贵州省专业技术人员继续教育公需科目考试题库(2025公需课课程)
- 陕西、山西省天一大联考2024-2025学年高中毕业班阶段性测试(七)英语试题及答案
- 2024年广东省中考生物真题【含答案、详细解析】
- 欧陆EV500变频器使用手册附录1
- 夜宿山寺-优质课件
- 5-1贯入法砌筑砂浆砂浆抗压强度检测方案
- 国开现代汉语专题形考任务4试题及答案
- 锚杆加固施工方案(通用版)
- 填石路堤沉降差检测记录表
评论
0/150
提交评论