




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷南丹县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 定义在上的偶函数满足,对且,都有,则有( )A BC. D2 设函数y=x3与y=()x的图象的交点为(x0,y0),则x0所在的区间是( )A(0,1)B(1,2)C(2,3)D(3,4)3 已知PD矩形ABCD所在的平面,图中相互垂直的平面有( )A2对B3对C4对D5对4 如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点给出下列命题不存在点D,使四面体ABCD有三个面是直角三角形不存在点D,使四面体ABCD是正三棱锥存在点D,使CD与AB垂直并且相等存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()ABCD5 已知函数f(x)=31+|x|,则使得f(x)f(2x1)成立的x的取值范围是( )ABC(,)D6 已知函数()在定义域上为单调递增函数,则的最小值是( )A B C D 7 对于函数f(x),若a,b,cR,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )ACD8 下列说法正确的是( )A命题“若x2=1,则x=1”的否命题为“若x2=1,则x1”B命题“x0R,x+x010”的否定是“xR,x2+x10”C命题“若x=y,则sin x=sin y”的逆否命题为假命题D若“p或q”为真命题,则p,q中至少有一个为真命题9 抛物线x=4y2的准线方程为( )Ay=1By=Cx=1Dx=10若满足约束条件,则当取最大值时,的值为( )A B C D11已知e是自然对数的底数,函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,则下列不等式中成立的是( )Aa1bBab1C1abDb1a12如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于( )A12+B12+23C12+24D12+二、填空题13对于映射f:AB,若A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:AB为一一映射,若存在对应关系,使A到B成为一一映射,则称A到B具有相同的势,给出下列命题:A是奇数集,B是偶数集,则A和B具有相同的势;A是平面直角坐标系内所有点形成的集合,B是复数集,则A和B不具有相同的势;若区间A=(1,1),B=R,则A和B具有相同的势其中正确命题的序号是14已知函数f(x)=,若f(f(0)=4a,则实数a=15若“xa”是“x22x30”的充分不必要条件,则a的取值范围为16用描述法表示图中阴影部分的点(含边界)的坐标的集合为17已知函数f(x)=xm过点(2,),则m=18已知过球面上 三点的截面和球心的距离是球半径的一半,且,则球表面积是_.三、解答题19如图,在直三棱柱ABCA1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点(1)求证:ACBC1;( 2)求证:AC1平面CDB120中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0p1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率()设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P(列代数式表示)()现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率21已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 22某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50),50,60),90,100)后得到如图的频率分布直方图()求图中实数a的值;()根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;()若从样本中数学成绩在40,50)与90,100两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率23已知a,b,c分别为ABC三个内角A,B,C的对边,且满足2bcosC=2ac()求B; ()若ABC的面积为,b=2求a,c的值24已知椭圆的左右焦点分别为,椭圆过点,直线交轴于,且为坐标原点(1)求椭圆的方程;(2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率分别为,且,证明:直线过定点南丹县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A 【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.11112 【答案】A【解析】解:令f(x)=x3,f(x)=3x2ln=3x2+ln20,f(x)=x3在R上单调递增;又f(1)=1=0,f(0)=01=10,f(x)=x3的零点在(0,1),函数y=x3与y=()x的图象的交点为(x0,y0),x0所在的区间是(0,1)故答案为:A3 【答案】D【解析】解:PD矩形ABCD所在的平面且PD面PDA,PD面PDC,面PDA面ABCD,面PDC面ABCD,又四边形ABCD为矩形BCCD,CDADPD矩形ABCD所在的平面PDBC,PDCDPDAD=D,PDCD=DCD面PAD,BC面PDC,AB面PAD,CD面PDC,BC面PBC,AB面PAB,面PDC面PAD,面PBC面PCD,面PAB面PAD综上相互垂直的平面有5对故答案选D4 【答案】D【解析】【分析】对于可构造四棱锥CABD与四面体OABC一样进行判定;对于,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,对于先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定的真假【解答】解:四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可存在无数个点D,使点O在四面体ABCD的外接球面上,故正确故选D5 【答案】A【解析】解:函数f(x)=31+|x|为偶函数,当x0时,f(x)=31+x此时y=31+x为增函数,y=为减函数,当x0时,f(x)为增函数,则当x0时,f(x)为减函数,f(x)f(2x1),|x|2x1|,x2(2x1)2,解得:x,故选:A【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档6 【答案】A【解析】试题分析:由题意知函数定义域为,因为函数()在定义域上为单调递增函数在定义域上恒成立,转化为在恒成立,故选A. 1考点:导数与函数的单调性7 【答案】D【解析】解:由题意可得f(a)+f(b)f(c)对于a,b,cR都恒成立,由于f(x)=1+,当t1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件当t10,f(x)在R上是减函数,1f(a)1+t1=t,同理1f(b)t,1f(c)t,由f(a)+f(b)f(c),可得 2t,解得1t2当t10,f(x)在R上是增函数,tf(a)1,同理tf(b)1,tf(c)1,由f(a)+f(b)f(c),可得 2t1,解得1t综上可得,t2,故实数t的取值范围是,2,故选D【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题8 【答案】D【解析】解:A命题“若x2=1,则x=1”的否命题为“若x21,则x1”,因此不正确;B命题“x0R,x+x010”的否定是“xR,x2+x10”,因此不正确;C命题“若x=y,则sin x=sin y”正确,其逆否命题为真命题,因此不正确;D命题“p或q”为真命题,则p,q中至少有一个为真命题,正确故选:D9 【答案】D【解析】解:抛物线x=4y2即为y2=x,可得准线方程为x=故选:D10【答案】D【解析】考点:简单线性规划11【答案】A【解析】解:由f(x)=ex+x2=0得ex=2x,由g(x)=lnx+x2=0得lnx=2x,作出计算y=ex,y=lnx,y=2x的图象如图:函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,y=ex与y=2x的交点的横坐标为a,y=lnx与y=2x交点的横坐标为b,由图象知a1b,故选:A【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键12【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=(2+8)424+(4212)+(4)+8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目二、填空题13【答案】 【解析】解:根据一一映射的定义,集合A=奇数B=偶数,不妨给出对应法则加1则AB是一一映射,故正确;对设Z点的坐标(a,b),则Z点对应复数a+bi,a、bR,复合一一映射的定义,故不正确;对,给出对应法则y=tanx,对于A,B两集合可形成f:AB的一一映射,则A、B具有相同的势;正确故选:【点评】本题借助考查命题的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力14【答案】2 【解析】解:f(0)=2,f(f(0)=f(2)=4+2a=4a,所以a=2故答案为:215【答案】a1 【解析】解:由x22x30得x3或x1,若“xa”是“x22x30”的充分不必要条件,则a1,故答案为:a1【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键16【答案】(x,y)|xy0,且1x2,y1 【解析】解:图中的阴影部分的点设为(x,y)则x,y)|1x0,y0或0x2,0y1=(x,y)|xy0且1x2,y1故答案为:(x,y)|xy0,且1x2,y117【答案】1 【解析】解:将(2,)代入函数f(x)得: =2m,解得:m=1;故答案为:1【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题18【答案】【解析】111考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.三、解答题19【答案】 【解析】解:(1)ABCA1B1C1为直三棱柱,CC1平面ABC,AC平面ABC,CC1ACAC=3,BC=4,AB=5,AB2=AC2+BC2,ACCB 又C1CCB=C,AC平面C1CB1B,又BC1平面C1CB1B,ACBC1(2)设CB1BC1=E,C1CBB1为平行四边形,E为C1B的中点又D为AB中点,AC1DEDE平面CDB1,AC1平面CDB1,AC1平面CDB1【点评】本题考查直线与平面垂直,直线与直线垂直,直线与平面平行的证明,考查逻辑推理能力20【答案】 【解析】解:()由题意可知:XB(9,p),故EX=9p在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:通讯器械正常工作的概率P=;()当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作若前9个元素有4个正常工作,则它的概率为:此时后两个元件都必须正常工作,它的概率为: p2;若前9个元素有5个正常工作,则它的概率为:此时后两个元件至少有一个正常工作,它的概率为:;若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P=p2+,可得PP=p2+,=故当p=时,P=P,即增加2个元件,不改变通讯器械的有效率;当0p时,PP,即增加2个元件,通讯器械的有效率降低;当p时,PP,即增加2个元件,通讯器械的有效率提高【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目21【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 22【答案】 【解析】解:()由频率分布直方图,得:10(0.005+0.01+0.025+a+0.01)=1,解得a=0.03()由频率分布直方图得到平均分:=0.0545+0.155+0.265+0.375+0.2585+0.195=74(分)()由频率分布直方图,得数学成绩在40,50)内的学生人数为400.05=2,这两人分别记为A,B,数学成绩在90,100)内的学生人数为400.1=4,这4人分别记为C,D,E,F,若从数学成绩在40,50)与90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,如果这两名学生的数学成绩都在40,50)或都在90,100)内,则这两名学生的数学成绩之差的绝对值不大于1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电玩品牌跨界合作研究-洞察阐释
- 班组先进事迹材料汇编15篇
- 校园火灾心得体会
- 2024年度河北省护师类之外科护理主管护师通关试题库(有答案)
- 2024年度河北省护师类之儿科护理主管护师题库检测试卷B卷附答案
- 柴油销售代理区域独家合作协议
- 车辆过户及车辆购置税减免政策协议
- 高端公寓宿管员贴心服务合同范本
- 玻璃钢防腐施工企业资质认证与审查合同
- 红枣园种植基地合作开发合同
- 民法典之“绿色原则”课件
- 消防控制室值班记录1
- 煤矿建设安全规范
- 考研考博-英语-天津理工大学考试押题卷含答案详解4
- T-CASAS 004.2-2018 4H碳化硅衬底及外延层缺陷图谱
- 二重积分精品课件
- 杭州网约车从业资格考试题库与答案
- 敏捷项目管理:敏捷革命课件
- 亚马逊品牌授权书(英文模板)
- Box-Behnken-Design
- 钢管悬挑脚手架方案
评论
0/150
提交评论