




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷夹江县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知函数y=f(x)对任意实数x都有f(1+x)=f(1x),且函数f(x)在1,+)上为单调函数若数列an是公差不为0的等差数列,且f(a6)=f(a23),则an的前28项之和S28=( )A7B14C28D562 下列命题中正确的是( )A复数a+bi与c+di相等的充要条件是a=c且b=dB任何复数都不能比较大小C若=,则z1=z2D若|z1|=|z2|,则z1=z2或z1=3 已知函数f(x)=,则=( )ABC9D94 已知实数x,y满足有不等式组,且z=2x+y的最大值是最小值的2倍,则实数a的值是( )A2BCD5 设a,b为实数,若复数,则ab=( )A2B1C1D26 圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的7 不等式ax2+bx+c0(a0)的解集为R,那么( )Aa0,0Ba0,0Ca0,0Da0,08 设a是函数x的零点,若x0a,则f(x0)的值满足( )Af(x0)=0Bf(x0)0Cf(x0)0Df(x0)的符号不确定9 在下列区间中,函数f(x)=()xx的零点所在的区间为( )A(0,1)B(1,2)C(2,3 )D(3,4)10在中,则等于( )A B C或 D211已知函数f(x)=2x+cosx,设x1,x2(0,)(x1x2),且f(x1)=f(x2),若x1,x0,x2成等差数列,f(x)是f(x)的导函数,则( )Af(x0)0Bf(x0)=0Cf(x0)0Df(x0)的符号无法确定12若等式(2x1)2014=a0+a1x+a2x2+a2014x2014对于一切实数x都成立,则a0+1+a2+a2014=( )ABCD0二、填空题13若函数f(x)=logax(其中a为常数,且a0,a1)满足f(2)f(3),则f(2x1)f(2x)的解集是14设A=x|x1或x3,B=x|axa+1,AB=B,则a的取值范围是15函数的单调递增区间是16在中,已知角的对边分别为,且,则角为 .17调查某公司的四名推销员,其工作年限与年推销金额如表 推销员编号1234工作年限x/(年)351014年推销金额y/(万元)23712由表中数据算出线性回归方程为=x+若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元18要使关于的不等式恰好只有一个解,则_.【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.三、解答题19设f(x)=x2ax+2当x,使得关于x的方程f(x)tf(2a)=0有三个不相等的实数根,求实数t的取值范围 20(本小题满分12分)数列满足:,且.(1)求数列的通项公式;(2)求数列的前项和.21火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?22命题p:关于x的不等式x2+2ax+40对一切xR恒成立,q:函数f(x)=(32a)x是增函数若pq为真,pq为假求实数a的取值范围23从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试()若选出的4名同学是同一性别,求全为女生的概率;()若设选出男生的人数为X,求X的分布列和EX24已知A(3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点(1)若x0=4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D判断直线CD与圆M的位置关系,并证明你的结论夹江县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:函数y=f(x)对任意实数x都有f(1+x)=f(1x),且函数f(x)在1,+)上为单调函数函数f(x)关于直线x=1对称,数列an是公差不为0的等差数列,且f(a6)=f(a23),a6+a23=2则an的前28项之和S28=14(a6+a23)=28故选:C【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题2 【答案】C【解析】解:A未注明a,b,c,dRB实数是复数,实数能比较大小C =,则z1=z2,正确;Dz1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确故选:C3 【答案】A【解析】解:由题意可得f()=2,f(f()=f(2)=32=,故选A4 【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=2x+z,由图可知zmax=21+1=3,zmin=2a+a=3a,由6a=3,得a=故选:B【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题5 【答案】C【解析】解:,因此ab=1故选:C6 【答案】A【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来的倍,底面半径缩短到原来的,则体积为,所以,故选A.考点:圆锥的体积公式.17 【答案】A【解析】解:不等式ax2+bx+c0(a0)的解集为R,a0,且=b24ac0,综上,不等式ax2+bx+c0(a0)的解集为的条件是:a0且0故选A8 【答案】C【解析】解:作出y=2x和y=logx的函数图象,如图:由图象可知当x0a时,2logx0,f(x0)=2logx00故选:C9 【答案】A【解析】解:函数f(x)=()xx,可得f(0)=10,f(1)=0f(2)=0,函数的零点在(0,1)故选:A10【答案】C【解析】考点:余弦定理11【答案】 A【解析】解:函数f(x)=2x+cosx,设x1,x2(0,)(x1x2),且f(x1)=f(x2),存在x1ax2,f(a)=0,解得a=,假设x1,x2在a的邻域内,即x2x10,f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,x0a,又xx0,又xx0时,f(x)递减,故选:A【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用12【答案】B【解析】解法一:,(C为常数),取x=1得,再取x=0得,即得,故选B解法二:,故选B【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用二、填空题13【答案】(1,2) 【解析】解:f(x)=logax(其中a为常数且a0,a1)满足f(2)f(3),0a1,x0,若f(2x1)f(2x),则,解得:1x2,故答案为:(1,2)【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题14【答案】a0或a3 【解析】解:A=x|x1或x3,B=x|axa+1,且AB=B,BA,则有a+11或a3,解得:a0或a3,故答案为:a0或a315【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)16【答案】【解析】考点:正弦定理【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是,消去多余的变量,从而解出角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在年全国卷( )中以选择题的压轴题出现.17【答案】 【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6,代入回归方程,可得a=,所以=x,当x=8时,y=,估计他的年推销金额为万元故答案为:【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题18【答案】. 【解析】分析题意得,问题等价于只有一解,即只有一解,故填:.三、解答题19【答案】【解析】设f(x)=x2ax+2当x,则t=,对称轴m=(0,且开口向下;时,t取得最小值,此时x=9税率t的最小值为【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识考查的知识全面而到位!20【答案】(1);(2)【解析】试题分析:(1)已知递推公式,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得,变形形式为;(2)由(1)可知,这是数列的后项与前项的差,要求通项公式可用累加法,即由求得试题解析:(1),又,.考点:数列的递推公式,等比数列的通项公式,等比数列的前项和累加法求通项公式21【答案】 【解析】解:由条件=,设,在中,由余弦定理得.=.在中,由正弦定理,得()(分钟)答到火车站还需15分钟. 22【答案】 【解析】解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+40对一切xR恒成立,函数g(x)的图象开口向上且与x轴没有交点,故=4a2160,2a2又函数f(x)=(32a)x是增函数,32a1,得a1又由于p或q为真,p且q为假,可知p和q一真一假(1)若p真q假,则,得1a2;(2)若p假q真,则,得a2综上可知,所求实数a的取值范围为1a2,或a223【答案】 【解析】解:()若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况;故全为女生的概率为=()共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4P(X=0)=;P(X=1)=;P(X=2)=;P(X=3)=;P(X=4)=故X的分布列为X01234PEX=0+1+2+3+4=【点评】本题考查离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络管理员职业素养及试题及答案
- 供应链管理中的风险考题及答案
- 在实践中加深对知识的理解2025年计算机二级VB考试试题及答案
- 行政管理考试防范的知识盲点:试题及答案
- 关于网络管理员考试的新探讨及试题答案
- 2025玉米买卖合同
- 弘扬学生团结互助的精神计划
- 行政法理论创新的路径选择试题及答案
- 代码抽象与接口设计试题及答案
- 2025年软件设计师复习全账本及试题及答案
- 2025年中考历史总复习《中国历史》七年级上册全册重点知识复习梳理(全册)
- 足疗店装修施工合同协议
- 装饰布展项目合同协议
- 《骨膜下注射技术》课件
- 建筑垃圾清运服务方案投标文件(技术方案)
- 2025-2030中国前列腺癌筛查行业市场发展趋势与前景展望战略研究报告
- 社保知识视频课件
- T型梁的装焊船体加工与装配课件
- 顶级广告设计公司方案汇报
- 《中华人民共和国公务员法概述》课件
- 2025年北京市房山区九年级初三一模数学试卷(含答案)
评论
0/150
提交评论