




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
左贡县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知f(x)=m2x+x2+nx,若x|f(x)=0=x|f(f(x)=0,则m+n的取值范围为( )A(0,4)B0,4)C(0,5D0,52 双曲线=1(mZ)的离心率为( )AB2CD33 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A20种B24种C26种D30种4 已知函数f(x)满足:x4,则f(x)=;当x4时f(x)=f(x+1),则f(2+log23)=( )ABCD5 下列各组函数为同一函数的是( )Af(x)=1;g(x)=Bf(x)=x2;g(x)=Cf(x)=|x|;g(x)=Df(x)=;g(x)=6 圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的7 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为( )A4B5C6D7 8 已知一组函数fn(x)=sinnx+cosnx,x0,nN*,则下列说法正确的个数是( )nN*,fn(x)恒成立若fn(x)为常数函数,则n=2f4(x)在0,上单调递减,在,上单调递增A0B1C2D39 集合U=R,A=x|x2x20,B=x|y=ln(1x),则图中阴影部分表示的集合是( )Ax|x1Bx|1x2Cx|0x1Dx|x110设函数f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是( )A(,2)(0,2)B(,2)(2,+)C(2,0)(2,+)D(2,0)(0,2)11复数z=(其中i是虚数单位),则z的共轭复数=( )AiBiC +iD +i12设是虚数单位,则复数在复平面内所对应的点位于( )A第一象限 B第二象限 C第三象限 D第四象限二、填空题13若函数f(x)=,则f(7)+f(log36)=14设全集U=0,1,2,3,4,集合A=0,1,2,集合B=2,3,则(UA)B=15已知函数,其图象上任意一点处的切线的斜率恒成立,则实数的取值范围是 16当a0,a1时,函数f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是17若直线ykx1=0(kR)与椭圆恒有公共点,则m的取值范围是18如图,在长方体ABCDA1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为三、解答题19如图,在ABC中,BC边上的中线AD长为3,且sinB=,cosADC=()求sinBAD的值;()求AC边的长20已知函数f(x)=x2ax+(a1)lnx(a1)() 讨论函数f(x)的单调性;() 若a=2,数列an满足an+1=f(an)(1)若首项a1=10,证明数列an为递增数列;(2)若首项为正整数,且数列an为递增数列,求首项a1的最小值 21(本小题满分10分)选修4-5:不等式选讲已知函数(1)若不等式的解集为,求实数的值;(2)若不等式,对任意的实数恒成立,求实数的最小值22如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC,证明:BC面EFG 23数列中,且满足.(1)求数列的通项公式;(2)设,求.24已知Sn为等差数列an的前n项和,且a4=7,S4=16(1)求数列an的通项公式;(2)设bn=,求数列bn的前n项和Tn左贡县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:设x1x|f(x)=0=x|f(f(x)=0,f(x1)=f(f(x1)=0,f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x)=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n0时,0,n不是x2+nx+n=0的根,故=n24n0,故0n4;综上所述,0n+m4;故选B【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题2 【答案】B【解析】解:由题意,m240且m0,mZ,m=1双曲线的方程是y2x2=1a2=1,b2=3,c2=a2+b2=4a=1,c=2,离心率为e=2故选:B【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b23 【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案故共有10+6+3+1=20种不同的分配方案,故选:A【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想4 【答案】A【解析】解:32+log234,所以f(2+log23)=f(3+log23)且3+log234f(2+log23)=f(3+log23)=故选A5 【答案】C【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为x|x0,定义域不同,故不是相同函数;B、函数f(x)的定义域为R,g(x)的定义域为x|x2,定义域不同,故不是相同函数;C、因为,故两函数相同;D、函数f(x)的定义域为x|x1,函数g(x)的定义域为x|x1或x1,定义域不同,故不是相同函数综上可得,C项正确故选:C6 【答案】A【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来的倍,底面半径缩短到原来的,则体积为,所以,故选A.考点:圆锥的体积公式.17 【答案】A 解析:模拟执行程序框图,可得S=0,n=0满足条,0k,S=3,n=1满足条件1k,S=7,n=2满足条件2k,S=13,n=3满足条件3k,S=23,n=4满足条件4k,S=41,n=5满足条件5k,S=75,n=6若使输出的结果S不大于50,则输入的整数k不满足条件5k,即k5,则输入的整数k的最大值为4故选:8 【答案】 D【解析】解:x0,fn(x)=sinnx+cosnxsinx+cosx=,因此正确;当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n2时,令sin2x=t0,1,则fn(x)=+=g(t),g(t)=,当t时,g(t)0,函数g(t)单调递减;当t时,g(t)0,函数g(t)单调递增加,因此函数fn(x)不是常数函数,因此正确f4(x)=sin4x+cos4x=(sin2x+cos2x)22sin2xcos2x=1=+,当x0,4x0,因此f4(x)在0,上单调递减,当x,4x,2,因此f4(x)在,上单调递增,因此正确综上可得:都正确故选:D【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题9 【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A(UB)A=x|x2x20=x|1x2,B=x|y=ln(1x)=x|1x0=x|x1,则UB=x|x1,则A(UB)=x|1x2故选:B【点评】本题主要考查Venn图表达 集合的关系和运算,比较基础10【答案】A【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是增函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:0x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(,2)(0,2)故选:A11【答案】C【解析】解:z=,=故选:C【点评】本题考查了复数代数形式的乘除运算,是基础题12【答案】B【解析】因为所以,对应的点位于第二象限故答案为:B【答案】B二、填空题13【答案】5 【解析】解:f(x)=,f(7)=log39=2,f(log36)=+1=,f(7)+f(log36)=2+3=5故答案为:514【答案】2,3,4 【解析】解:全集U=0,1,2,3,4,集合A=0,1,2,CUA=3,4,又B=2,3,(CUA)B=2,3,4,故答案为:2,3,415【答案】【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,恒成立,由1考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件16【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:217【答案】1,5)(5,+) 【解析】解:整理直线方程得y1=kx,直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y1即是y21得到m1椭圆方程中,m5m的范围是1,5)(5,+)故答案为1,5)(5,+)【点评】本题主要考查了直线与圆锥曲线的综合问题本题采用了数形结合的方法,解决问题较为直观18【答案】114 【解析】解:根据题目要求得出:当53的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题三、解答题19【答案】 【解析】解:()由题意,因为sinB=,所以cosB=又cosADC=,所以sinADC=所以sinBAD=sin(ADCB)=()=()在ABD中,由正弦定理,得,解得BD=故BC=15,从而在ADC中,由余弦定理,得AC2=9+2252315()=,所以AC=【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题20【答案】 【解析】解:(),(x0),当a=2时,则在(0,+)上恒成立,当1a2时,若x(a1,1),则f(x)0,若x(0,a1)或x(1,+),则f(x)0,当a2时,若x(1,a1),则f(x)0,若x(0,1)或x(a1,+),则f(x)0,综上所述:当1a2时,函数f(x)在区间(a1,1)上单调递减,在区间(0,a1)和(1,+)上单调递增;当a=2时,函数(0,+)在(0,+)上单调递增;当a2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a1,+)上单调递增()若a=2,则,由()知函数f(x)在区间(0,+)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2a10,假设0akak+1(k1),因为函数f(x)在区间(0,+)上单调递增,f(ak+1)f(ak),即得ak+2ak+10,由数学归纳法原理知,an+1an对于一切正整数n都成立,数列an为递增数列(2)由(1)知:当且仅当0a1a2,数列an为递增数列,f(a1)a1,即(a1为正整数),设(x1),则,函数g(x)在区间上递增,由于,g(6)=ln60,又a1为正整数,首项a1的最小值为6【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分如果多做,则按所做的前两题计分【选修4-2:矩阵与变换】21【答案】【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力22【答案】 【解析】解:(1)如图(2)它可以看成一个长方体截去一个小三棱锥,设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=644=96cm3,V2=222=cm3,V=v1v2=cm3(3)证明:如图,在长方体ABCDABCD中,连接AD,则ADBC因为E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ktv食堂宿舍管理制度
- 公司年终全勤奖管理制度
- 初中生午餐分流管理制度
- 普查数据使用管理制度
- 乡镇医院电子化管理制度
- 义齿加工厂内部管理制度
- 施工企业仓储管理制度
- 大米食用油库房管理制度
- 孝南区村级财务管理制度
- 卫生院行政值班管理制度
- 2025年全省民政行业职业技能大赛(孤残儿童护理员)备考试题库(含答案)
- 食堂保温箱管理制度
- 风电场预警管理制度
- 南京鼓楼医院合作协议书
- T/CI 218-2023压缩空气储能电站选点规划技术规程
- 法律考试测试题及答案大全
- 2025年河北省专技人员继续教育公需课(新课程答案七)
- 医务人员职业暴露防护与处置流程
- 人工智能技术在市场营销咨询中的应用研究-洞察阐释
- 2025-2030中国寿险行业市场现状供需分析及投资评估规划分析研究报告
- 钣金加工设备安全操作
评论
0/150
提交评论