三门峡市高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
三门峡市高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
三门峡市高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
三门峡市高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
三门峡市高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三门峡市高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数f(x)=31+|x|,则使得f(x)f(2x1)成立的x的取值范围是( )ABC(,)D2 若函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,则该函数的最大值为( )A5B4C3D23 曲线y=x32x+4在点(1,3)处的切线的倾斜角为( )A30B45C60D1204 已知实数a,b,c满足不等式0abc1,且M=2a,N=5b,P=()c,则M、N、P的大小关系为( )AMNPBPMNCNPM5 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )Ai7?Bi15?Ci15?Di31?6 如图,在正四棱锥SABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:EPBD;EPAC;EP面SAC;EP面SBD中恒成立的为( )ABCD7 已知,那么夹角的余弦值( )ABC2D8 若函数则函数的零点个数为( )A1 B2 C3 D49 设a,bR且a+b=3,b0,则当+取得最小值时,实数a的值是( )ABC或D310函数y=f(x)在1,3上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是( )Af(2)f()f(5)Bf()f(2)f(5)Cf(2)f(5)f()Df(5)f()f(2)11设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A1 B2 C4 D612已知等比数列an的公比为正数,且a4a8=2a52,a2=1,则a1=( )AB2CD二、填空题13已知i是虚数单位,复数的模为14在下列给出的命题中,所有正确命题的序号为 函数y=2x3+3x1的图象关于点(0,1)成中心对称;对x,yR若x+y0,则x1或y1;若实数x,y满足x2+y2=1,则的最大值为;若ABC为锐角三角形,则sinAcosB在ABC中,BC=5,G,O分别为ABC的重心和外心,且=5,则ABC的形状是直角三角形15命题p:xR,函数的否定为16已知f(x),g(x)都是定义在R上的函数,且满足以下条件:f(x)=axg(x)(a0,a1);g(x)0;f(x)g(x)f(x)g(x);若,则a=17设是空间中给定的个不同的点,则使成立的点的个数有_个18命题:“xR,都有x31”的否定形式为三、解答题19(本小题满分12分)已知函数.(1)求函数在上的最大值和最小值;(2)在中,角所对的边分别为,满足,求的值.111120在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。(1)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;(2)设点是曲线上的一个动点,求它到直线的距离的最小值。21已知是等差数列,是等比数列,为数列的前项和,且,()(1)求和;(2)若,求数列的前项和222016年1月1日起全国统一实施全面两孩政策为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:生二胎不生二胎合计70后30154580后451055合计7525100()以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;()根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由参考数据:P(K2k)0.150.100.050.0250.0100.005k2.0722.7063.8415.0246.6357.879(参考公式:,其中n=a+b+c+d)23如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2()证明ADBE;()求多面体EFABCD体积的最大值24已知向量(+3)(75)且(4)(72),求向量,的夹角三门峡市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:函数f(x)=31+|x|为偶函数,当x0时,f(x)=31+x此时y=31+x为增函数,y=为减函数,当x0时,f(x)为增函数,则当x0时,f(x)为减函数,f(x)f(2x1),|x|2x1|,x2(2x1)2,解得:x,故选:A【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档2 【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x2,2,函数的最大值为:5故选:A【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力3 【答案】B【解析】解:y/=3x22,切线的斜率k=3122=1故倾斜角为45故选B【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题4 【答案】A【解析】解:0abc1,12a2,5b1,()c1,5b=()b()c()c,即MNP,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键5 【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i15?故选:C【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查6 【答案】 A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN在中:由异面直线的定义可知:EP与BD是异面直线,不可能EPBD,因此不正确;在中:由正四棱锥SABCD,可得SO底面ABCD,ACBD,SOACSOBD=O,AC平面SBD,E,M,N分别是BC,CD,SC的中点,EMBD,MNSD,而EMMN=M,平面EMN平面SBD,AC平面EMN,ACEP故正确在中:由同理可得:EM平面SAC,若EP平面SAC,则EPEM,与EPEM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直即不正确在中:由可知平面EMN平面SBD,EP平面SBD,因此正确故选:A【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养7 【答案】A【解析】解:,=,|=, =11+3(1)=4,cos=,故选:A【点评】本题考查了向量的夹角公式,属于基础题8 【答案】D【解析】 考点:函数的零点【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点. 9 【答案】C【解析】解:a+b=3,b0,b=3a0,a3,且a0当0a3时, +=+=f(a),f(a)=+=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值当a0时, +=()=(+)=f(a),f(a)=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值综上可得:当a=或时, +取得最小值故选:C【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题10【答案】B【解析】解:函数y=f(x)在1,3上单调递减,且函数f(x+3)是偶函数,f()=f(6),f(5)=f(1),f(6)f(2)f(1),f()f(2)f(5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档11【答案】B【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,解得,由题意得,解得或,因为是递增的等差数列,所以,故选B考点:等差数列的性质12【答案】D【解析】解:设等比数列an的公比为q,则q0,a4a8=2a52,a62=2a52,q2=2,q=,a2=1,a1=故选:D二、填空题13【答案】 【解析】解:复数=i1的模为=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,属于基础题14【答案】 :【解析】解:对于函数y=2x33x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于点(0,1)的对称点为(x0,2y0)也满足函数的解析式,则正确;对于对x,yR,若x+y0,对应的是直线y=x以外的点,则x1,或y1,正确;对于若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(2,0)连线的斜率,其最大值为,正确;对于若ABC为锐角三角形,则A,B,AB都是锐角,即AB,即A+B,BA,则cosBcos(A),即cosBsinA,故不正确对于在ABC中,G,O分别为ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则ODBC,GD=AD,=|,由则,即则又BC=5则有由余弦定理可得cosC0,即有C为钝角则三角形ABC为钝角三角形;不正确故答案为:15【答案】x0R,函数f(x0)=2cos2x0+sin2x03 【解析】解:全称命题的否定是特称命题,即为x0R,函数f(x0)=2cos2x0+sin2x03,故答案为:x0R,函数f(x0)=2cos2x0+sin2x03,16【答案】 【解析】解:由得,所以又由f(x)g(x)f(x)g(x),即f(x)g(x)f(x)g(x)0,也就是,说明函数是减函数,即,故故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察 17【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。故答案为:18【答案】x0R,都有x031 【解析】解:因为全称命题的否定是特称命题所以,命题:“xR,都有x31”的否定形式为:命题:“x0R,都有x031”故答案为:x0R,都有x031【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查三、解答题19【答案】(1)最大值为,最小值为;(2).【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简再利用的性质可求在上的最值;(2)利用,可得,再由余弦定理可得,再据正弦定理可得.1试题解析:(2)因为,即,又在中,由余弦定理得,所以.由正弦定理得:,即,所以.考点:1.辅助角公式;2.性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.20【答案】(1)点P在直线上(2)【解析】(1)把极坐标系下的点化为直角坐标,得P(0,4)。因为点P的直角坐标(0,4)满足直线的方程,所以点P在直线上,(2)因为点Q在曲线C上,故可设点Q的坐标为,从而点Q到直线的距离为,21【答案】(1),或,;(2).【解析】试题解析:(1)设的公差为,的公比为, 由题意得解得或,或,(2)若,由(1)知,考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.22【答案】 【解析】解:()由已知得该市70后“生二胎”的概率为=,且XB(3,),P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,其分布列如下:X0123P(每算对一个结果给1分)E(X)=3=2()假设生二胎与年龄无关,K2=3.0302.706,所以有90%以上的把握认为“生二胎与年龄有关”23【答案】 【解析】()证明:BD为圆O的直径,ABAD,直线AE是圆O所在平面的垂线,ADAE,ABAE=A,AD平面ABE,ADBE;()解:多面体EFABCD体积V=VBAEFC+VDAEFC=2VBAEFC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论