北辰区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
北辰区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
北辰区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
北辰区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
北辰区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北辰区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知在数轴上0和3之间任取一实数,则使“”的概率为( )A B C D2 已知双曲线C:=1(a0,b0)的左、右焦点分别为F1,F2,过点F1作直线lx轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )ABC2D3 下列函数中,既是偶函数,又在区间(0,+)上单调递减的是( )ABy=x2Cy=x|x|Dy=x24 阅读下面的程序框图,则输出的S=( )A14B20C30D555 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要4030不需要160270由算得附表:参照附表,则下列结论正确的是( )有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;采用系统抽样方法比采用简单随机抽样方法更好;采用分层抽样方法比采用简单随机抽样方法更好;A B C D6 已知ab0,那么下列不等式成立的是( )AabBa+cb+cC(a)2(b)2D7 执行如图所示的程序框图,若输入的分别为0,1,则输出的()A4 B16 C27 D368 某程序框图如图所示,该程序运行输出的k值是( )A4B5C6D79 设是等比数列的前项和,则此数列的公比( )A-2或-1 B1或2 C.或2 D或-110设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f(x)的图象可能是( )ABCD11等比数列an中,a3,a9是方程3x211x+9=0的两个根,则a6=( )A3BCD以上皆非12已知点是双曲线C:左支上一点,是双曲线的左、右两个焦点,且,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率是( )A. B.2 C. D.【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.二、填空题13设集合 ,满足,求实数_.14在等差数列中,公差为,前项和为,当且仅当时取得最大值,则的取值范围为_.15如果实数满足等式,那么的最大值是 16若函数f(x)=m在x=1处取得极值,则实数m的值是17=18如图,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为cm3三、解答题19已知双曲线过点P(3,4),它的渐近线方程为y=x(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1|PF2|=41,求F1PF2的余弦值20【海安县2018届高三上学期第一次学业质量测试】已知函数,其中,是自然对数的底数.(1)当时,求曲线在处的切线方程;(2)求函数的单调减区间;(3)若在恒成立,求的取值范围.21已知函数f(x)=2cos2x+2sinxcosx1,且f(x)的周期为2()当时,求f(x)的最值;()若,求的值22已知函数f(x)=exax1(a0,e为自然对数的底数)(1)求函数f(x)的最小值;(2)若f(x)0对任意的xR恒成立,求实数a的值23啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(+)+1=r2(r0)()求直线l的普通方程和圆C的直角坐标方程;()若圆C上的点到直线l的最大距离为3,求r值 24已知函数f(x)=x3+ax+2()求证:曲线=f(x)在点(1,f(1)处的切线在y轴上的截距为定值;()若x0时,不等式xex+mf(x)am2x恒成立,求实数m的取值范围 北辰区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】试题分析:由得,由几何概型可得所求概率为.故本题答案选C.考点:几何概型2 【答案】D【解析】解:设F1(c,0),F2(c,0),则l的方程为x=c,双曲线的渐近线方程为y=x,所以A(c, c)B(c, c)AB为直径的圆恰过点F2F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a离心率为=故选D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式3 【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+)上单调递增,不满足条件;函数y=x|x|为奇函数,不满足条件;函数y=x2为偶函数,在区间(0,+)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题4 【答案】C【解析】解:S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=54退出循环,故答案为C【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题5 【答案】D 【解析】解析:本题考查独立性检验与统计抽样调查方法由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,正确,选D6 【答案】C【解析】解:ab0,ab0,(a)2(b)2,故选C【点评】本题主要考查不等式的基本性质的应用,属于基础题7 【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。故答案为:D8 【答案】 C【解析】解:程序在运行过程中各变量的值如下表示:S k 是否继续循环循环前 100 0/第一圈10020 1 是第二圈1002021 2 是第六圈1002021222324250 6 是则输出的结果为7故选C【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模9 【答案】D【解析】试题分析:当公比时,成立.当时,都不等于,所以, ,故选D. 考点:等比数列的性质.10【答案】D【解析】解:根据函数与导数的关系:可知,当f(x)0时,函数f(x)单调递增;当f(x)0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x0时,函数f(x)单调递减,则f(x)0,排除选项A,C当x0时,函数f(x)先单调递增,则f(x)0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题11【答案】C【解析】解:a3,a9是方程3x211x+9=0的两个根,a3a9=3,又数列an是等比数列,则a62=a3a9=3,即a6=故选C12【答案】A. 【解析】二、填空题13【答案】【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.14【答案】【解析】试题分析:当且仅当时,等差数列的前项和取得最大值,则,即,解得:.故本题正确答案为.考点:数列与不等式综合.15【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.16【答案】 2【解析】解:函数f(x)=m的导数为f(x)=mx2+2x,由函数f(x)=m在x=1处取得极值,即有f(1)=0,即m+2=0,解得m=2,即有f(x)=2x2+2x=2(x1)x,可得x=1处附近导数左正右负,为极大值点故答案为:2【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方法,属于基础题17【答案】2 【解析】解: =2+lg1002=2+22=2,故答案为:2【点评】本题考查了对数的运算性质,属于基础题18【答案】6 【解析】解:过A作AOBD于O,AO是棱锥的高,所以AO=,所以四棱锥ABB1D1D的体积为V=6故答案为:6三、解答题19【答案】 【解析】解:(1)设双曲线的方程为y2x2=(0),代入点P(3,4),可得=16,所求求双曲线的标准方程为(2)设|PF1|=d1,|PF2|=d2,则d1d2=41,又由双曲线的几何性质知|d1d2|=2a=6,d12+d222d1d2=36即有d12+d22=36+2d1d2=118,又|F1F2|=2c=10,|F1F2|2=100=d12+d222d1d2cosF1PF2cosF1PF2=【点评】本题给出双曲线的渐近线,在双曲线经过定点P的情况下求它的标准方程,并依此求F1PF2的余弦值着重考查了双曲线的标准方程与简单几何性质、利用余弦定理解三角形等知识,属于中档题20【答案】(1)(2)当时,无单调减区间;当时,的单调减区间是;当时,的单调减区间是.(3)【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。 (2) 因为,当时,所以无单调减区间.当即时,列表如下:所以的单调减区间是.当即时,列表如下:所以的单调减区间是.综上,当时,无单调减区间;当时,的单调减区间是;当时,的单调减区间是.(3).当时,由(2)可得,为上单调增函数,所以在区间上的最大值,符合题意.当时,由(2)可得,要使在区间上恒成立,只需,解得.当时,可得,.设,则,列表如下:所以,可得恒成立,所以.当时,可得,无解.综上,的取值范围是.21【答案】 【解析】(本题满分为13分)解:()=,T=2,当时,f(x)有最小值,当时,f(x)有最大值2()由,所以,所以,而,所以,即22【答案】 【解析】解:(1)f(x)=exax1(a0),f(x)=exa,由f(x)=exa=0得x=lna,由f(x)0得,xlna,此时函数单调递增,由f(x)0得,xlna,此时函数单调递减,即f(x)在x=lna处取得极小值且为最小值,最小值为f(lna)=elnaalna1=aalna1(2)若f(x)0对任意的xR恒成立,等价为f(x)min0,由(1)知,f(x)min=aalna1,设g(a)=aalna1,则g(a)=1lna1=lna,由g(a)=0得a=1,由g(x)0得,0x1,此时函数单调递增,由g(x)0得,x1,此时函数单调递减,g(a)在a=1处取得最大值,即g(1)=0,因此g(a)0的解为a=1,a=123【答案】 【解析】解:()根据直线l的参数方程为(t为参数),消去参数,得x+y=0,直线l的直角坐标方程为x+y=0,圆C的极坐标方程为p2+2psin(+)+1=r2(r0)(x+)2+(y+)2=r2(r0)圆C的直角坐标方程为(x+)2+(y+)2=r2(r0)()圆心C(,),半径为r,(5分)圆心C到直线x+y=0的距离为d=2,又圆C上的点到直线l的最大距离为3,即d+r=3,r=32=1【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识 24【答案】 【解析】()证明:f(x)的导数f(x)=x2+a,即有f(1)=a+,f(1)=1+a,则切线方程为y(a+)=(1+a)(x1),令x=0,得y=为定值; ()解:由xex+mf(x)am2x对x0时恒成立,得xex+mx2m2x0对x0时恒成立,即ex+mxm20对x0时恒成立,则(ex+mxm2)min0,记g(x)=ex+mxm2,g(x)=ex+m,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论