浚县一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
浚县一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
浚县一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
浚县一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
浚县一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浚县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(3)的值为( )A2B4C0D42 下列哪组中的两个函数是相等函数( )A BC D3 在下面程序框图中,输入,则输出的的值是( )A B C D【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.4 若函数在上是单调函数,则的取值范围是( ) A B C D5 已知函数f(x)=x2,则函数y=f(x)的大致图象是( )ABCD6 下面各组函数中为相同函数的是( )Af(x)=,g(x)=x1Bf(x)=,g(x)=Cf(x)=ln ex与g(x)=elnxDf(x)=(x1)0与g(x)=7 在ABC中,若2cosCsinA=sinB,则ABC的形状是( )A直角三角形B等边三角形C等腰直角三角形D等腰三角形8 函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)9 已知是等比数列,则公比( )A B-2 C2 D10已知d为常数,p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11已知圆过定点且圆心在抛物线上运动,若轴截圆所得的弦为,则弦长等于( )A2 B3 C4 D与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.12在的展开式中,含项的系数为( )(A) ( B ) (C) (D) 二、填空题13已知f(x)=,x0,若f1(x)=f(x),fn+1(x)=f(fn(x),nN+,则f2015(x)的表达式为14函数的单调递增区间是15抛物线y2=8x上到顶点和准线距离相等的点的坐标为16已知函数为定义在区间2a,3a1上的奇函数,则a+b=17已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为18椭圆C: +=1(ab0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为三、解答题19已知an为等比数列,a1=1,a6=243Sn为等差数列bn的前n项和,b1=3,S5=35(1)求an和Bn的通项公式;(2)设Tn=a1b1+a2b2+anbn,求Tn20(本小题满分10分)选修4-5:不等式选讲已知函数,.(1)解不等式;(2)对任意的实数,不等式恒成立,求实数的最小值.11121(本题满分13分)已知函数.(1)当时,求的极值;(2)若在区间上是增函数,求实数的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.22解关于x的不等式12x2axa2(aR)23已知椭圆C1: +x2=1(a1)与抛物线C:x2=4y有相同焦点F1()求椭圆C1的标准方程;()已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当OBC面积最大时,求直线l的方程24已知定义在的一次函数为单调增函数,且值域为(1)求的解析式;(2)求函数的解析式并确定其定义域浚县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=x,则f(x)+f(x)=f(0)=0,所以,f(x)=f(x),所以,函数f(x)为奇函数又f(3)=4,所以,f(3)=f(3)=4,所以,f(0)+f(3)=4故选:B【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题2 【答案】D111【解析】考点:相等函数的概念.3 【答案】B4 【答案】A【解析】试题分析:根据可知,函数图象为开口向上的抛物线,对称轴为,所以若函数在区间上为单调函数,则应满足:或,所以或。故选A。考点:二次函数的图象及性质(单调性)。5 【答案】A【解析】解:由题意可得,函数的定义域x0,并且可得函数为非奇非偶函数,满足f(1)=f(1)=1,可排除B、C两个选项当x0时,t=在x=e时,t有最小值为函数y=f(x)=x2,当x0时满足y=f(x)e20,因此,当x0时,函数图象恒在x轴上方,排除D选项故选A6 【答案】D【解析】解:对于A:f(x)=|x1|,g(x)=x1,表达式不同,不是相同函数;对于B:f(x)的定义域是:x|x1或x1,g(x)的定义域是xx1,定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是x|x0,定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是x|x1,是相同函数;故选:D【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题7 【答案】D【解析】解:A+B+C=180,sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,sinCcosAsinAcosC=0,即sin(CA)=0,A=C 即为等腰三角形故选:D【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础8 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反9 【答案】D【解析】试题分析:在等比数列中,,.考点:等比数列的性质.10【答案】A【解析】解:p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p:nN*,an+2an+1d;q:数列 an不是公差为d的等差数列,由pq,即an+2an+1不是常数,则数列 an就不是等差数列,若数列 an不是公差为d的等差数列,则不存在nN*,使得an+2an+1d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立11【答案】A【解析】过作垂直于轴于,设,则,在中,为圆的半径,为的一半,因此又点在抛物线上,.12【答案】C 【解析】因为,所以项只能在展开式中,即为,系数为故选C二、填空题13【答案】 【解析】解:由题意f1(x)=f(x)=f2(x)=f(f1(x)=,f3(x)=f(f2(x)=,fn+1(x)=f(fn(x)=,故f2015(x)=故答案为:14【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)15【答案】( 1,2) 【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=2a2+2=,求得a=2点P的坐标为( 1,2)故答案为:( 1,2)【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题16【答案】2 【解析】解:f(x)是定义在2a,3a1上奇函数,定义域关于原点对称,即2a+3a1=0,a=1,函数为奇函数,f(x)=,即b2x1=b+2x,b=1即a+b=2,故答案为:217【答案】(,0) y=2x 【解析】解:双曲线的a=2,b=4,c=2,可得焦点的坐标为(,0),渐近线方程为y=x,即为y=2x故答案为:(,0),y=2x【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题18【答案】 【解析】解:椭圆C: +=1(ab0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a=8,可得a=4,b2=a2c2=12,可得b=2,椭圆的短轴长为:4故答案为:4【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力三、解答题19【答案】 【解析】解:()an为等比数列,a1=1,a6=243,1q5=243,解得q=3,Sn为等差数列bn的前n项和,b1=3,S5=3553+d=35,解得d=2,bn=3+(n1)2=2n+1()Tn=a1b1+a2b2+anbn,得:,整理得:【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用20【答案】(1)或;(2).【解析】试题解析:(1)由题意不等式可化为,当时,解得,即;当时,解得,即;当时,解得,即 (4分)综上所述,不等式的解集为或. (5分)(2)由不等式可得,分离参数,得,故实数的最小值是. (10分)考点:绝对值三角不等式;绝对值不等式的解法121【答案】【解析】(1)函数的定义域为,因为,当时,则.令,得.2分所以的变化情况如下表:0极小值所以当时,的极小值为,函数无极大值.5分22【答案】 【解析】解:由12x2axa20(4x+a)(3xa)0(x+)(x)0,a0时,解集为x|x或x;a=0时,x20,解集为x|xR且x0;a0时,解集为x|x或x综上,当a0时,解集为x|x或x;当a=0时,x20,解集为x|xR且x0;当a0时,解集为x|x或x23【答案】 【解析】解:()抛物线x2=4y的焦点为F1(0,1),c=1,又b2=1,椭圆方程为: +x2=1 ()F2(0,1),由已知可知直线l1的斜率必存在,设直线l1:y=kx1由消去y并化简得x24kx+4=0直线l1与抛物线C2相切于点A=(4k)244=0,得k=1切点A在第一象限k=1ll1设直线l的方程为y=x+m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论