




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷黟县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知i为虚数单位,则复数所对应的点在( )A第一象限B第二象限C第三象限D第四象限2 已知函数f(x)=ax33x2+1,若f(x)存在唯一的零点x0,且x00,则实数a的取值范围是( )A(1,+)B(2,+)C(,1)D(,2)3 若复数(m21)+(m+1)i为实数(i为虚数单位),则实数m的值为( )A1B0C1D1或14 设P是椭圆+=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于( )A22B21C20D135 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点若a为无理数,则在过点P(a,)的所有直线中( )A有无穷多条直线,每条直线上至少存在两个有理点B恰有n(n2)条直线,每条直线上至少存在两个有理点C有且仅有一条直线至少过两个有理点D每条直线至多过一个有理点6 已知集合A=y|y=x2+2x3,则有( )AABBBACA=BDAB=7 在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2=bc,sinC=2sinB,则A=( )A30B60C120D1508 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )ABC1D9 对于任意两个正整数m,n,定义某种运算“”如下:当m,n都为正偶数或正奇数时,mn=m+n;当m,n中一个为正偶数,另一个为正奇数时,mn=mn则在此定义下,集合M=(a,b)|ab=12,aN*,bN*中的元素个数是( )A10个B15个C16个D18个10曲线y=在点(1,1)处的切线方程为( )Ay=x2By=3x+2Cy=2x3Dy=2x+111直线l平面,直线m平面,命题p:“若直线m,则ml”的逆命题、否命题、逆否命题中真命题的个数为( )A0B1C2D312如图,AB是半圆O的直径,AB2,点P从A点沿半圆弧运动至B点,设AOPx,将动点P到A,B两点的距离之和表示为x的函数f(x),则yf(x)的图象大致为( )二、填空题13函数在点处切线的斜率为 14直角坐标P(1,1)的极坐标为(0,0)15某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:小时)间的关系为(,均为正常数)如果前5个小时消除了的污染物,为了消除的污染物,则需要_小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.16i是虚数单位,化简: =17在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是18以点(1,3)和(5,1)为端点的线段的中垂线的方程是三、解答题19在中,.(1)求的值;(2)求的值。20已知函数f(x)=2x24x+a,g(x)=logax(a0且a1)(1)若函数f(x)在1,3m上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)求实数a的值;设t1=f(x),t2=g(x),t3=2x,当x(0,1)时,试比较t1,t2,t3的大小 21如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y26x91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线22记函数f(x)=log2(2x3)的定义域为集合M,函数g(x)=的定义域为集合N求:()集合M,N;()集合MN,R(MN) 23设F是抛物线G:x2=4y的焦点(1)过点P(0,4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FAFB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值24已知矩阵M所对应的线性变换把点A(x,y)变成点A(13,5),试求M的逆矩阵及点A的坐标 黟县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解: =1+i,其对应的点为(1,1),故选:A2 【答案】D【解析】解:f(x)=ax33x2+1,f(x)=3ax26x=3x(ax2),f(0)=1;当a=0时,f(x)=3x2+1有两个零点,不成立;当a0时,f(x)=ax33x2+1在(,0)上有零点,故不成立;当a0时,f(x)=ax33x2+1在(0,+)上有且只有一个零点;故f(x)=ax33x2+1在(,0)上没有零点;而当x=时,f(x)=ax33x2+1在(,0)上取得最小值;故f()=3+10;故a2;综上所述,实数a的取值范围是(,2);故选:D3 【答案】A【解析】解:(m21)+(m+1)i为实数,m+1=0,解得m=1,故选A4 【答案】A【解析】解:P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,|PF2|=213|PF1|=264=22故选:A【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用5 【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1x2时,直线的斜率存在,且有,又x2a为无理数,而为有理数,所以只能是,且y2y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C故选:C【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目6 【答案】B【解析】解:y=x2+2x3=(x+1)24,y4则A=y|y4x0,x+2=2(当x=,即x=1时取“=”),B=y|y2,BA故选:B【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项7 【答案】A【解析】解:sinC=2sinB,c=2b,a2b2=bc,cosA=A是三角形的内角A=30故选A【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题8 【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状9 【答案】B【解析】解:ab=12,a、bN*,若a和b一奇一偶,则ab=12,满足此条件的有112=34,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有261=11个,所以满足条件的个数为4+11=15个故选B10【答案】D【解析】解:y=()=,k=y|x=1=2l:y+1=2(x1),则y=2x+1故选:D11【答案】B【解析】解:直线l平面,直线m平面,命题p:“若直线m,则ml”,命题P是真命题,命题P的逆否命题是真命题;P:“若直线m不垂直于,则m不垂直于l”,P是假命题,命题p的逆命题和否命题都是假命题故选:B12【答案】【解析】选B.取AP的中点M,则PA2AM2OAsinAOM2sin ,PB2OM2OAcosAOM2cos,yf(x)PAPB2sin2cos2sin(),x0,根据解析式可知,只有B选项符合要求,故选B.二、填空题13【答案】【解析】试题分析:考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.14【答案】 【解析】解:=,tan=1,且0,=点P的极坐标为故答案为:15【答案】15【解析】由条件知,所以.消除了的污染物后,废气中的污染物数量为,于是,所以小时.16【答案】1+2i 【解析】解: =故答案为:1+2i17【答案】 【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为: =剩下的凸多面体的体积是1=故答案为:【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力18【答案】xy2=0 【解析】解:直线AB的斜率 kAB=1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),所以线段AB的中垂线得方程为y1=x3即xy2=0,故答案为xy2=0【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程三、解答题19【答案】 【解析】解:()在中,根据正弦定理,于是()在中,根据余弦定理,得于是所以 20【答案】 【解析】解:(1)因为抛物线y=2x24x+a开口向上,对称轴为x=1,所以函数f(x)在(,1上单调递减,在1,+)上单调递增,因为函数f(x)在1,3m上不单调,所以3m1,(2分)得,(3分)(2)因为f(1)=g(1),所以2+a=0,(4分)所以实数a的值为2因为t1=f(x)=x22x+1=(x1)2,t2=g(x)=log2x,t3=2x,所以当x(0,1)时,t1(0,1),(7分)t2(,0),(9分)t3(1,2),(11分)所以t2t1t3(12分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键21【答案】 【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2当动圆与圆O2相内切时,有|O2M|=10R将两式相加,得|O1M|+|O2M|=12|O1O2|,动圆圆心M(x,y)到点O1(3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(3,0)、O2(3,0),长轴长等于12的椭圆2c=6,2a=12,c=3,a=6b2=369=27圆心轨迹方程为,轨迹为椭圆(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y2108=0,整理得所以圆心轨迹方程为,轨迹为椭圆【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键22【答案】【解析】解:(1)由2x30 得 x,M=x|x由(x3)(x1)0 得 x1 或x3,N=x|x1,或 x3(2)MN=(3,+),MN=x|x1,或 x3,CR(MN)=【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题23【答案】 【解析】解:(1)设切点由,知抛物线在Q点处的切线斜率为,故所求切线方程为即y=x0xx02因为点P(0,4)在切线上所以,解得x0=4所求切线方程为y=2x4(2)设A(x1,y1),C(x2,y2)由题意知,直线AC的斜率k存在,由对称性,不妨设k0因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1点A,C的坐标满足方程组,得x24kx4=0,由根与系数的关系知,|AC|=4(1+k2),因为ACBD,所以BD的斜率为,从而BD的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025呼伦贝尔莫力达瓦达斡尔族自治旗卫生健康系统校园引进人才模拟试卷含答案详解
- 2025黑龙江齐齐哈尔市红十字中心血站人员招聘1人考前自测高频考点模拟试题附答案详解(完整版)
- 领导干部任前廉政法规知识竞赛题库及参考答案
- 2025年公务员政治理论应知应会知识试题库及答案
- 2025领导干部任前廉政法规知识题库和参考答案
- 2025年法律职业资格考试宪法学模拟试题试卷(含答案)
- 2025福建漳州长运高中招聘21人模拟试卷带答案详解
- 2025北京市场监管总局直属单位招聘210人模拟试卷及答案详解(夺冠)
- 2025年安徽皖信人力招聘管内客运站12名安检工作人员考前自测高频考点模拟试题及答案详解(名师系列)
- 2025昆明市西山区人民政府碧鸡街道办事处招聘编制外工作人员(9人)考前自测高频考点模拟试题及答案详解(夺冠)
- 村河长制管理工作总结
- 国家职业技术技能标准 4-07-02-05 商务数据分析师S 2024年版
- 模具开发进度管理表
- 正骨八法注意事项和操作应用
- 成都中医药大学药学院毕业实习鉴定表
- 投标货物质量标准的详细描述
- 镇墩稳定计算
- 2023-2024学年辽宁省沈阳市郊联体高二上学期10月月考物理试题(解析版)
- 《大学生军事理论教程》第五章
- 中国建筑色卡
- 第八章世纪美国政治思想
评论
0/150
提交评论