




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浑南区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列关系正确的是( )A10,1B10,1C10,1D10,12 函数f(x)=x2+,则f(3)=( )A8B9C11D103 已知向量=(1,),=(,x)共线,则实数x的值为( )A1BC tan35Dtan354 下列函数中,与函数的奇偶性、单调性相同的是( )A B C D5 函数f(x)=tan(2x+),则( )A函数最小正周期为,且在(,)是增函数B函数最小正周期为,且在(,)是减函数C函数最小正周期为,且在(,)是减函数D函数最小正周期为,且在(,)是增函数6 已知函数y=f(x)对任意实数x都有f(1+x)=f(1x),且函数f(x)在1,+)上为单调函数若数列an是公差不为0的等差数列,且f(a6)=f(a23),则an的前28项之和S28=( )A7B14C28D567 命题:“xR,x2x+20”的否定是( )AxR,x2x+20BxR,x2x+20CxR,x2x+20DxR,x2x+208 设m,n是正整数,多项式(12x)m+(15x)n中含x一次项的系数为16,则含x2项的系数是( )A13B6C79D379 已知|=3,|=1,与的夹角为,那么|4|等于( )A2BCD1310已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是( )ABCD11ABC中,A(5,0),B(5,0),点C在双曲线上,则=( )ABCD12若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在( )A第一象限 B第二象限 C第三象限 D第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力二、填空题13抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)14已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为15在空间直角坐标系中,设,且,则 .16一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件im中的整数m的值是17向量=(1,2,2),=(3,x,y),且,则xy=18函数y=1(xR)的最大值与最小值的和为2 三、解答题19(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.统计局调查队随机抽取了甲、乙两单位中各5名职工的成绩,成绩如下表: 甲单位8788919193乙单位8589919293(1)根据表中的数据,分别求出甲、乙两单位职工成绩的平均数和方差,并判断哪个单位对法律知识的掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.20已知函数f(x)=ax3+bx23x在x=1处取得极值求函数f(x)的解析式21(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,已知ksin Bsin Asin C(k为正常数),a4c.(1)当k时,求cos B;(2)若ABC面积为,B60,求k的值22某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额23已知函数f(x)=xalnx(aR)(1)当a=2时,求曲线y=f(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值24已知f(x)=(1+x)m+(1+2x)n(m,nN*)的展开式中x的系数为11(1)求x2的系数取最小值时n的值(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和浑南区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:由于10,1,10,1,故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键2 【答案】C【解析】解:函数=,f(3)=32+2=11故选C3 【答案】B【解析】解:向量=(1,),=(,x)共线,x=,故选:B【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题4 【答案】A【解析】试题分析:所以函数为奇函数,且为增函数.B为偶函数,C定义域与不相同,D为非奇非偶函数,故选A.考点:函数的单调性与奇偶性5 【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+(,),函数f(x)=tan(2x+)单调递增,故选:D6 【答案】C【解析】解:函数y=f(x)对任意实数x都有f(1+x)=f(1x),且函数f(x)在1,+)上为单调函数函数f(x)关于直线x=1对称,数列an是公差不为0的等差数列,且f(a6)=f(a23),a6+a23=2则an的前28项之和S28=14(a6+a23)=28故选:C【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题7 【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题:“xR,x2x+20”的否定是xR,x2x+20故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查8 【答案】 D【解析】二项式系数的性质【专题】二项式定理【分析】由含x一次项的系数为16利用二项展开式的通项公式求得2m+5n=16 ,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数【解答】解:由于多项式(12x)m+(15x)n中含x一次项的系数为(2)+(5)=16,可得2m+5n=16 再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(2)2+(5)2=37,故选:D【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题9 【答案】C【解析】解:|=3,|=1,与的夹角为,可得=|cos,=31=,即有|4|=故选:C【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题10【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|AC|,因为|OC|=,|AC|2=1|OC|2,所以2()21,所以a1或a1,因为1,所以a,所以实数a的取值范围是,故选:A【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题11【答案】D【解析】解:ABC中,A(5,0),B(5,0),点C在双曲线上,A与B为双曲线的两焦点,根据双曲线的定义得:|ACBC|=2a=8,|AB|=2c=10,则=故选:D【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目12【答案】B【解析】二、填空题13【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键14【答案】(,0) y=2x 【解析】解:双曲线的a=2,b=4,c=2,可得焦点的坐标为(,0),渐近线方程为y=x,即为y=2x故答案为:(,0),y=2x【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题15【答案】1【解析】试题分析:,解得:,故填:1.考点:空间向量的坐标运算16【答案】6 【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;判断框中的条件为i6?故答案为:6【点评】本题考查程序框图,尤其考查循环结构对循环体每次循环需要进行分析并找出内在规律本题属于基础题17【答案】12 【解析】解:向量=(1,2,2),=(3,x,y),且,=,解得x=6,y=6,xy=66=12故答案为:12【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目18【答案】2【解析】解:设f(x)=,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,即f(x)的最大值与最小值之和为0将函数f(x)向上平移一个单位得到函数y=1的图象,所以此时函数y=1(xR)的最大值与最小值的和为2故答案为:2【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键三、解答题19【答案】(1),,甲单位对法律知识的掌握更稳定;(2).【解析】试题分析:(1)先求出甲乙两个单位职工的考试成绩的平均数,以及他们的方差,则方差小的更稳定;(2)从乙单位抽取两名职工的成绩,所有基本事件用列举法得到共种情况,抽取的两名职工的分数差至少是的事件用列举法求得共有种,由古典概型公式得出概率.试题解析:解:(1), ,甲单位的成绩比乙单位稳定,即甲单位对法律知识的掌握更稳定. (6分)考点:1.平均数与方差公式;2.古典概型20【答案】 【解析】解:(1)f(x)=3ax2+2bx3,依题意,f(1)=f(1)=0,即,解得a=1,b=0f(x)=x33x【点评】本题考查了导数和函数极值的问题,属于基础题21【答案】【解析】解:(1)sin Bsin Asin C,由正弦定理得bac,又a4c,b5c,即b4c,由余弦定理得cos B.(2)SABC,B60.acsin B.即ac4.又a4c,a4,c1.由余弦定理得b2a2c22accos B421224113.b,ksin Bsin Asin C,由正弦定理得k,即k的值为.22【答案】 【解析】解:(1)(2)设回归方程为=bx+a则b=5/5=13805550/145552=6.5故回归方程为=6.5x+17.5(3)当x=7时, =6.57+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元)【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节23【答案】 【解析】解:函数f(x)的定义域为(0,+),(1)当a=2时,f(x)=x2lnx,因而f(1)=1,f(1)=1,所以曲线y=f(x)在点A(1,f(1)处的切线方程为y1=(x1),即x+y2=0(2)由,x0知:当a0时,f(x)0,函数f(x)为(0,+)上的增函数,函数f(x)无极值;当a0时,由f(x)=0,解得x=a又当x(0,a)时,f(x)0,当x(a,+)时,f(x)0从而函数f(x)在x=a处取得极小值,且极小值为f(a)=aalna,无极大值综上,当a0时,函数f(x)无极值;当a0时,函数f(x)在x=a处取得极小值aalna,无极大值24【答案】 【解析】【专题】计算题【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,1,两式子相加求出展开式中x的奇次幂项的系数之和【解答】解:(1)由已知Cm1+2Cn1=11,m+2n=11,x2的系数为Cm2+22Cn2=+2n(n1)=+(11m)(1)=(m)2+mN*,m=5时,x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境监测销售知识培训课件
- 丰田打造标准工程方案(3篇)
- 房屋加固工程专项方案(3篇)
- 猫咪饮食基础知识培训课件
- 小学语文散文类课文教学的优化策略
- 猫咪的聚会课件
- 返乡老屋改造工程方案(3篇)
- 安全教育校本培训课件
- 电网工程安全评估方案(3篇)
- 安全教育干部培训会讲话课件
- 国企清产核资制度
- 动画运动规律-动画概论
- 中级注册安全工程师考试《安全生产专业实务道路运输安全》模拟卷及详解
- 龙虎山正一日诵早晚课
- 米粉及杂粮类制品课件
- 楔形平板产生的等厚干涉
- 骨髓腔穿刺在急诊急救中的应用课件
- 机械动力学PPT完整全套教学课件
- 年产2.03万吨高端精细化学品及5G新材料项目环评报告书
- 群众文化副高答辩问题及答案
- GB/T 41972-2022铸铁件铸造缺陷分类及命名
评论
0/150
提交评论