木兰县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
木兰县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
木兰县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
木兰县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
木兰县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷木兰县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设是虚数单位,则复数在复平面内所对应的点位于( )A第一象限 B第二象限 C第三象限 D第四象限2 设集合M=x|x1,N=x|xk,若MN,则k的取值范围是( )A(,1B1,+)C(1,+)D(,1)3 已知双曲线kx2y2=1(k0)的一条渐近线与直线2x+y3=0垂直,则双曲线的离心率是( )ABC4D4 在二项式的展开式中,含x4的项的系数是( )A10B10C5D55 若则的值为( ) A8 B C2 D 6 执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )A(11,12)B(12,13)C(13,14)D(13,12)7 过点P(2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有( )A3条B2条C1条D0条8 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是( )A2BCD39 已知全集U=R,集合M=x|2x12和N=x|x=2k1,k=1,2,的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3个B2个C1个D无穷多个10设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D611阅读如右图所示的程序框图,若输入,则输出的值是( )(A) 3 ( B ) 4 (C) 5 (D) 612设全集U=1,2,3,4,5,集合A=2,3,4,B=2,5,则B(UA)=( )A5B1,2,5C1,2,3,4,5D二、填空题13已知,是空间二向量,若=3,|=2,|=,则与的夹角为14当a0,a1时,函数f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是15等比数列an的前n项和Snk1k22n(k1,k2为常数),且a2,a3,a42成等差数列,则an_16抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分已知P(400X450)=0.3,则P(550X600)=17设向量a(1,1),b(0,t),若(2ab)a2,则t_18已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是三、解答题19已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示()求椭圆E的方程;()判断ABCD能否为菱形,并说明理由()当ABCD的面积取到最大值时,判断ABCD的形状,并求出其最大值20已知ABC的顶点A(3,2),C的平分线CD所在直线方程为y1=0,AC边上的高BH所在直线方程为4x+2y9=0(1)求顶点C的坐标;(2)求ABC的面积21已知椭圆:(ab0)过点A(0,2),离心率为,过点A的直线l与椭圆交于另一点M(I)求椭圆的方程;(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆的右焦点F且与直线 x2y2=0相切?若存在,求出直线l的方程;若不存在,请说明理由 22若点(p,q),在|p|3,|q|3中按均匀分布出现(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程x2+2pxq2+1=0有两个实数根的概率23某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如表:月份x12345销售量y(百件)44566()该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)()一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望24已知数列an的首项a1=2,且满足an+1=2an+32n+1,(nN*)(1)设bn=,证明数列bn是等差数列;(2)求数列an的前n项和Sn木兰县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】因为所以,对应的点位于第二象限故答案为:B【答案】B2 【答案】B【解析】解:M=x|x1,N=x|xk,若MN,则k1k的取值范围是1,+)故选:B【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题3 【答案】A【解析】解:由题意双曲线kx2y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=x故=,k=,可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证4 【答案】B【解析】解:对于,对于103r=4,r=2,则x4的项的系数是C52(1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具5 【答案】B【解析】试题分析:,故选B。考点:分段函数。6 【答案】 A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,当n=2时,满足进行循环的条件,故x=9,y=10,n=3,当n=3时,满足进行循环的条件,故x=11,y=12,n=4,当n=4时,不满足进行循环的条件,故输出的数对为(11,12),故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答7 【答案】C【解析】解:假设存在过点P(2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则即2a2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=ab=8,即ab=16,联立,解得:a=4,b=4直线l的方程为:,即xy+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题8 【答案】C 解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面则体积为=,解得x=故选:C9 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为MN,又由M=x|2x12得1x3,即M=x|1x3,在此范围内的奇数有1和3所以集合MN=1,3共有2个元素,故选B10【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B11【答案】 D. 【解析】该程序框图计算的是数列前项和,其中数列通项为最小值为5时满足,由程序框图可得值是6 故选D12【答案】B【解析】解:CUA=1,5B(UA)=2,51,5=1,2,5故选B二、填空题13【答案】60 【解析】解:|=,=3,cos=与的夹角为60故答案为:60【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式14【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:215【答案】【解析】当n1时,a1S1k12k2,当n2时,anSnSn1(k1k22n)(k1k22n1)k22n1,k12k2k220,即k1k20,又a2,a3,a42成等差数列2a3a2a42,即8k22k28k22.由联立得k11,k21,an2n1.答案:2n116【答案】0.3【解析】离散型随机变量的期望与方差【专题】计算题;概率与统计【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550600)【解答】解:某校高三学生成绩(总分750分)近似服从正态分布,平均成绩为500分,正态分布曲线的对称轴为x=500,P(400450)=0.3,根据对称性,可得P(550600)=0.3故答案为:0.3【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键17【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:218【答案】 【解析】解:已知为所求;故答案为:【点评】本题主要考查椭圆的标准方程属基础题三、解答题19【答案】 【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3椭圆E的方程为=1(II)假设ABCD能为菱形,则OAOB,kOAkOB=1当ABx轴时,把x=1代入椭圆方程可得: =1,解得y=,取A,则|AD|=2,|AB|=3,此时ABCD不能为菱形当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立,化为:(3+4k2)x2+8k2x+4k212=0,x1+x2=,x1x2=kOAkOB=,假设=1,化为k2=,因此平行四边形ABCD不可能是菱形综上可得:平行四边形ABCD不可能是菱形(III)当ABx轴时,由(II)可得:|AD|=2,|AB|=3,此时ABCD为矩形,S矩形ABCD=6当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立,化为:(3+4k2)x2+8k2x+4k212=0,x1+x2=,x1x2=|AB|=点O到直线AB的距离d=S平行四边形ABCD=4SOAB=2=则S2=36,S6因此当平行四边形ABCD为矩形面积取得最大值620【答案】 【解析】解:(1)由高BH所在直线方程为4x+2y9=0, =2直线ACBH,kACkBH=1,直线AC的方程为,联立点C的坐标C(1,1)(2),直线BC的方程为,联立,即点B到直线AC:x2y+1=0的距离为又,【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题21【答案】 【解析】解:()依题意得,解得,所以所求的椭圆方程为;()假设存在直线l,使得以AM为直径的圆C,经过椭圆后的右焦点F且与直线x2y2=0相切,因为以AM为直径的圆C过点F,所以AFM=90,即AFAM,又=1,所以直线MF的方程为y=x2,由消去y,得3x28x=0,解得x=0或x=,所以M(0,2)或M(,),(1)当M为(0,2)时,以AM为直径的圆C为:x2+y2=4,则圆心C到直线x2y2=0的距离为d=,所以圆C与直线x2y2=0不相切;(2)当M为(,)时,以AM为直径的圆心C为(),半径为r=,所以圆心C到直线x2y2=0的距离为d=r,所以圆心C与直线x2y2=0相切,此时kAF=,所以直线l的方程为y=+2,即x+2y4=0,综上所述,存在满足条件的直线l,其方程为x+2y4=0【点评】本题考直线与圆锥曲线的关系、椭圆方程的求解,考查直线与圆的位置关系,考查分类讨论思想,解决探究型问题,往往先假设存在,由此推理,若符合题意,则存在,否则不存在22【答案】 【解析】解:(1)根据题意,点(p,q),在|p|3,|q|3中,即在如图的正方形区域,其中p、q都是整数的点有66=36个,点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1x3,1y3,点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,所以点M(x,y)落在上述区域的概率P1=;(2)|p|3,|q|3表示如图的正方形区域,易得其面积为36;若方程x2+2pxq2+1=0有两个实数根,则有=(2p)24(q2+1)0,解可得p2+q21,为如图所示正方形中圆以外的区域,其面积为36,即方程x2+2pxq2+1=0有两个实数根的概率,P2=【点评】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论