计算机图形学13投影变换.ppt_第1页
计算机图形学13投影变换.ppt_第2页
计算机图形学13投影变换.ppt_第3页
计算机图形学13投影变换.ppt_第4页
计算机图形学13投影变换.ppt_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

投 影 变 换 *信息学院湖北大学 数计学院 7.4 投影变换 7.4.1 基本概念 投影变换就是把三维立体(或物体)投射到投 影面上得到二维平面图形。 分类: v平面几何投影主要指平行投影、透视投影以 及通过这些投影变换而得到的三维立体的常用平 面图形:三视图、轴测图。 v观察投影是指在观察空间下进行的图形投影 变换。 Date2湖北大学 数计学院 7.4 投影变换 7.4.1 基本概念 投影中心与投影平面之间的距离为无限 投影中心与投影平面之间的距离为有限 根据投影 方向与投 影平面的 夹角 根据投影 平面与坐 标轴的夹 角 Date3湖北大学 数计学院 7.4 投影变换 7.4.1 基本概念 w 一、平面几何投影 w 投影中心、投影面、投影线: Date4湖北大学 数计学院 7.4 投影变换 7.4.1 基本概念 平面几何投影可分为两大类: 透视投影的投影中心到投影面之间的距离是有限的 平行投影的投影中心到投影面之间的距离是无限的 Date5湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 w 平行投影可分成两类:正投影和斜投影。 Date6湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 w 一、正投影 w 正投影又可分为:三视图和正轴测。 w 当投影面与某一坐标轴垂直时,得到的投影为三视图 ;否则,得到的投影为正轴测图。 Date7湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 三视图:正视图、侧视图和俯视 图 Date8湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 w 把三维空间的图形在三个方向上所看到的棱 线分别投影到三个坐标面上。再经过适当变换 放置到同一平面上。 z y x a2 c2 b2 a1 b1 c1 Date9湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 w 1、正平行投影(三视图) 工程制图中常用到的三视图,是由空间一物体向三 个互相垂直的投影面作正投影得到的。这三个投影面分 别称为:正投影面V(ZOX),侧投影面W(YOZ),水 平投影面H(XOY)。 V O U Z X Y Y Date10湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 正投影视图 正投影是将立体向xoz面投影得到,投影结 果为: x = x; y=0; z=z 为将点(x y z) 变换为(x y z),只需将点(x y z)作 如下变换即可: 三视图 Date11湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 w 将该投影向左角移动dx=tx,dy=tz; w 将x轴反向与U轴保持一致; w 将坐标原点平移到点(a,b)。 三视图 Date12湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 俯投影视图 1)将立体向xoy面作正投影,此时Z坐标取0; 三视图 Date13湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 2)使水平投影面绕X轴旋转-90,使与正投影 面处于同一平面; 3)最后让图形沿Z轴平移dx=tx , dy=ty; 将x轴、y轴反向以与U、V两坐标轴方向一致 ; 5)将坐标原点平移至点O Date14湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 侧投影视图 先将立体向YOZ面作正投影(X坐标取 为0); Date15湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 2)使水平投影面绕Z轴旋转90,使与正投影 面处于同一平面; 3)最后让图形沿Z轴平移dx=ty , dy=tz; 4)将坐标原点平移至点O Date16湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 1 1、正轴测图、正轴测图: : w 当投影方向不取坐标轴方向,投影平面不垂直于坐标 轴时,产生的正投影称为正轴测投影。 w 正轴测投影分类: w 正等测:投影平面与三个坐标轴的交点到坐标原点的 距离都相等。沿三个轴线具有相同的变形系数。 Date17湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 w 正二测:投影平面与两个坐标轴的交点到坐标 原点的距离都相等。沿两个轴线具有相同的变形 系数。 Date18湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 w 正三测:投影平面与三个坐标轴的交点到坐标 原点的距离都不相等。沿三个轴线具有各不相同 的变形系数。 Date19湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 w 正等测图(等轴测) A B C 分析:对于正等测图OA=OB=OC Date20湖北大学 数计学院 正二测图 分析:对于正二测图OA、OB、OC有两个相等,但与另一个不等 A B C Date21湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 w 一、斜投影 w 斜投影图,即斜轴测图,是将三维形体向一 个单一的投影面作平行投影,但投影方向不垂 直于投影面所得到的平面图形。(通常选择投 影面平行于某个主轴) w 常用的斜轴测图有斜等测图和斜二测图。 Date22湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 w 斜等测投影 投影平面与一坐标轴垂直 投影线与投影平面成45角 与投影平面垂直的线投影后长度 不变 w 斜二测投影 投影平面与一坐标轴垂直 投影线与该轴夹角成 arcctg(1/2)角 该轴轴向变形系数为 。即与投 影平面垂直的线投影后长度变为原来的 一半。 Date23湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 OP = OP = ARCTG(2) OP = 2OP Date24湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 斜平行投影求法 w 1 已知投影方向矢量为(xp,yp,zp) w 设形体被投影到XOY平面上 w 形体上的一点(x,y,z)在xoy平面上投影后(xs,ys) w 投影方向矢量为(xp,yp,zp) w 投影线的参数方程为: Date25湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 斜平行投影求法 w 因为 w 所以 w 若令 Date26湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 斜平行投影求法 w则矩阵式为: Date27湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 斜平行投影求法 w 2设(xe,ye,ze)为任一点,(xs,ys)为(xe,ye,ze )在XcOcYc平面上的投影 w 设立方体上一点 P(0,0,1)在XcOcYc平面上的投 影P (lcos,lsin,0),投影方向为PP,PP与投影面 的夹角为, 为投影与x轴的夹角,则投影方 向矢量为(lcos,lsin,-1) Date28湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 斜平行投影求法 w 现考虑任一点(xe,ye,ze)在XcOcYc平面上的投 影(xs,ys) w 投影方向与投影线PP平行 w 所以 Date29湖北大学 数计学院 7.4 投影变换 7.4.2 平行投影 斜平行投影求法 w 矩阵形式为: w斜等侧中:l=1,=45 w斜二侧中:l=1/2, =arctg=63.4 w正平行投影:l=0, =90 Date30湖北大学 数计学院 7.4 投影变换 7.4.3 透视投影 透视的基本知识 w 透视投影是一种中心投影法,在日常生活中,我们观 察外界的景物时,常会看到一些明显的透视现象。 w 如:我们站在笔直的大街上,向远处看去,会感到街 上具有相同高度的路灯柱子,显得近处的高,远处的矮 ,越远越矮。这些路灯柱子,即使它们之间的距离相等 ,但是视觉产生的效果则是近处的间隔显得大,远处的 间隔显得小,越远越密。观察道路的宽度,也会感到越 远越窄,最后汇聚于一点。这些现象,称之为透视现象 。 w 产生透视的原因,可用下图来说明: Date31湖北大学 数计学院 7.4 投影变换 7.4.3 透视投影 透视的基本知识 w 图中,AA,BB,CC为一组高度和间隔都相等,排成 一条直线的电线杆,从视点E去看,发现 w AEABEBCEC w 若在视点E与物体间设置一个透明的画面P,让P通过 AA,则在画面上看到的各电线杆的投影aabbcc waa即EA,EA与画面P的交点的连线; wbb即为EB,EB与画面P的交点的连线。 wcc 即为EC,EC与画面P的交点的连线。 w 近大远小 Date32湖北大学 数计学院 7.4 投影变换 7.4.3 透视投影 透视的基本知识 w 若连a,b,c及a,b,c各点,它们的连线汇聚于 一点。 w 然而,实际上,A,B,C与A,B,C的连线是两 条互相平行的直线,这说明空间不平行于画面( 投影面)的一切平行线的透视投影,即a,b,c与 a,b,c的连线,必交于一点,这点我们称之为 灭点。 Date33湖北大学 数计学院 7.4 投影变换 7.4.3 透视投影 灭点 不平行于投影面的平行线的投影会汇聚到一个点, 这个点称为灭点(Vanishing Point)。 坐标轴方向的平行线在投影面上形成的灭点称作主 灭点。 一点透视有一个主灭点,即投影面与一个坐标轴正 交,与另外两个坐标轴平行。 两点透视有两个主灭点,即投影面与两个坐标轴相 交,与另一个坐标轴平行。 三点透视有三个主灭点,即投影面与三个坐标轴都 相交。 Date34湖北大学 数计学院 7.4 投影变换 7.4.3 透视投影 透视举例 Date35湖北大学 数计学院 一、 简单的一点透视投影变 换 P P0 0 :视点视点 S S平面:平面:投影面,屏幕画面投影面,屏幕画面 点点Q Q w w 的透视的透视:P P 0 0Q Qw w 与平面与平面S S的交点的交点 Q Qw w S S Y Y X X Z ZO O P P0 0 当投影面与某轴垂直时为一点当投影面与某轴垂直时为一点 透视;当投影面平行于某坐标透视;当投影面平行于某坐标 轴,但与另外两轴不垂直时为轴,但与另外两轴不垂直时为 二点透视;否则为三点透视二点透视;否则为三点透视 Z2 Z1 Q Qw w ( (X Xw w, , Y Yw w, , Z Zw w ) ) Q Qs s ( (X X s s , Y, Y s s) ) XsXs Ys Ys Q Q s s 简单的一点透视投影变换(续) 讨论:讨论: 利用几何关系可得:利用几何关系可得: 若令用户坐标系若令用户坐标系( (屏幕坐标屏幕坐标) )的原点在的原点在O O,则则 Z Z 1 1 0 0, 上式可简化为:上式可简化为: (1) (1) 若若, , 为平行投影,为平行投影, X X s s X Xw w , , Y Y s s Y Yw w , , 结论显然正确结论显然正确 讨论讨论( (续续) ): (2) (2) 上述变换可写为上述变换可写为 回忆前面对齐次坐标变换矩阵的讨论,知若回忆前面对齐次坐标变换矩阵的讨论,知若 g g -1/ Z-1/ Z 2 2 ,则主灭则主灭 点在点在 Z Z 轴上轴上 Z Z 1/1/ g g 处处 讨论讨论( (续续) ): (3) (3) 类似,若主灭点在类似,若主灭点在 Y Y 轴或轴或 X X 轴上,变换矩阵可轴上,变换矩阵可 分别写为:分别写为: 二点透视投影的变换矩阵 w ) 二点透视 w 在变换矩阵中,第四列的p,q,r起透视变换作用 当p、q、r中有两个不为0时的透视 变换称为二点透视变换。假定p!=0, r!=0, q=0; 将空间上一点(x,y,z)进行变换, 可得如下结果: Date40湖北大学 数计学院 二点透视投影的变换矩阵 由上式可看出: 当x-时,在X轴上1/p处有一个灭点; 当z-时,在Z轴上1/r处有一个灭点; 经齐次化处理后得: Date41湖北大学 数计学院 三点透视投影的变换矩阵 w )三点透视 w 类似,若p,q,r都不为0,则可得到有三个灭点 的三点透视。 经齐次化处理后得: Date42湖北大学 数计学院 三点透视投影的变换矩阵 由上式可看出: 当x-时,在X轴上1/p处有一个灭点; 当y-时,在Y轴上1/q处有一个灭点; 当z-时,在Z轴上1/r处有一个灭点; Date43湖北大学 数计学院 7.5 三维裁剪 三维窗口经投影变换后,在平行投影时为立方 体,在透视投影时为四棱台。 三维线段裁剪就是要显示一条三维线段落在三 维窗口内的部分线段。 本课以平行投影为例讨论三维线段的裁剪算法 对于立方体裁剪窗口六个面的方程分别是: x = -1; x = 1 y = -1; y = 1 z = -1; z = 1 Date44湖北大学 数计学院 空间任一条直线段P1(x1, y1, z1)、P2(x2, y2, z2) 。P1P2端点和六个面的关系可转换为一个6位二 进制代码表示,其定义如下 Date45湖北大学 数计学院 第1位为1: 点在裁剪窗口的上面, 即y1; 否则第1位为0 第2位为1: 点在裁剪窗口的下面, 即y1; 否则第3位为0 上 第4位为1: 点在裁剪窗口的左面, 即x1; 否则第5位为0 第6位为1: 点在裁剪窗口的前面, 即z-1; 否则第6位为0 即: 前后左右下 Date46湖北大学 数计学院 计算原理 如同二维线段对矩形窗口的编码裁剪算法一 样, (1) 若一条线段的两端点的编码都是0,则线 段落在窗口的空间内; (2) 若两端点编码的逻辑与(逐位进行)为 非0,则此线段在窗口的空间以外 否则,需对此线段作分段处理,即要计算此 线段和窗口空间相应平面的交点,并取有效交 点 Date47湖北大学 数计学院 计算方法 l 对任意一条三维线段的参数方程可写成: x = x1 + ( x2 x1) t = x1 + p .

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论