马尔康市高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
马尔康市高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
马尔康市高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
马尔康市高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
马尔康市高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

马尔康市高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 对“a,b,c是不全相等的正数”,给出两个判断:(ab)2+(bc)2+(ca)20;ab,bc,ca不能同时成立,下列说法正确的是( )A对错B错对C对对D错错2 对于函数f(x),若a,b,cR,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )ACD3 已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=( )A2B6C4D24 一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体积为,多面体的体积为,则( )1111A B C D不是定值,随点的变化而变化5 已知,若,则( )ABCD【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力6 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )Ai7?Bi15?Ci15?Di31?7 定义某种运算S=ab,运算原理如图所示,则式子+的值为( )A4B8C10D138 已知数列的首项为,且满足,则此数列的第4项是( )A1 B C. D9 已知,则fff(2)的值为( )A0B2C4D810袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红、黑球各一个11已知函数f(x)=x26x+7,x(2,5的值域是( )A(1,2B(2,2C2,2D2,1)12已知向量,若为实数,则( )A B C1 D2二、填空题13已知z是复数,且|z|=1,则|z3+4i|的最大值为14设变量x,y满足约束条件,则的最小值为15已知各项都不相等的等差数列,满足,且,则数列项中的最大值为_.16【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为_.17【泰州中学2018届高三10月月考】设函数是奇函数的导函数,当时,则使得成立的的取值范围是_18利用计算机产生1到6之间取整数值的随机数a和b,在a+b为偶数的条件下,|ab|2发生的概率是三、解答题19设an是公比小于4的等比数列,Sn为数列an的前n项和已知a1=1,且a1+3,3a2,a3+4构成等差数列(1)求数列an的通项公式;(2)令bn=lna3n+1,n=12求数列bn的前n项和Tn20如图,在四边形ABCD中,DAB=90,ADC=135,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积21设函数()求函数的最小正周期;()求函数在上的最大值与最小值22已知函数f(x)=loga(1+x)loga(1x)(a0,a1)()判断f(x)奇偶性,并证明;()当0a1时,解不等式f(x)023已知数列an是各项均为正数的等比数列,满足a3=8,a3a22a1=0()求数列an的通项公式()记bn=log2an,求数列anbn的前n项和Sn24已知函数f(x)=ax3+2xa,()求函数f(x)的单调递增区间;()若a=n且nN*,设xn是函数fn(x)=nx3+2xn的零点(i)证明:n2时存在唯一xn且;(i i)若bn=(1xn)(1xn+1),记Sn=b1+b2+bn,证明:Sn1 马尔康市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:由:“a,b,c是不全相等的正数”得:(ab)2+(bc)2+(ca)2中至少有一个不为0,其它两个式子大于0,故正确;但是:若a=1,b=2,c=3,则中ab,bc,ca能同时成立,故错故选A【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力属于基础题2 【答案】D【解析】解:由题意可得f(a)+f(b)f(c)对于a,b,cR都恒成立,由于f(x)=1+,当t1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件当t10,f(x)在R上是减函数,1f(a)1+t1=t,同理1f(b)t,1f(c)t,由f(a)+f(b)f(c),可得 2t,解得1t2当t10,f(x)在R上是增函数,tf(a)1,同理tf(b)1,tf(c)1,由f(a)+f(b)f(c),可得 2t1,解得1t综上可得,t2,故实数t的取值范围是,2,故选D【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题3 【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题4 【答案】B【解析】考点:棱柱、棱锥、棱台的体积5 【答案】A【解析】6 【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i15?故选:C【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查7 【答案】 C【解析】解:模拟执行程序,可得,当ab时,则输出a(b+1),反之,则输出b(a+1),2tan=2,lg=1,(2tan)lg=(2tan)(lg+1)=2(1+1)=0,lne=1,()1=5,lne()1=()1(lne+1)=5(1+1)=10,+=0+10=10故选:C8 【答案】B【解析】 9 【答案】C【解析】解:20f(2)=0f(f(2)=f(0)0=0f(0)=2即f(f(2)=f(0)=220f(2)=22=4即ff(2)=f(f(0)=f(2)=4故选C10【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题11【答案】C【解析】解:由f(x)=x26x+7=(x3)22,x(2,5当x=3时,f(x)min=2当x=5时,函数f(x)=x26x+7,x(2,5的值域是2,2故选:C12【答案】B 【解析】试题分析:因为,所以,又因为,所以,故选B. 考点:1、向量的坐标运算;2、向量平行的性质.二、填空题13【答案】6 【解析】解:|z|=1,|z3+4i|=|z(34i)|z|+|34i|=1+=1+5=6,|z3+4i|的最大值为6,故答案为:6【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题14【答案】4 【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键15【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.16【答案】【解析】17【答案】【解析】18【答案】 【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是66=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|ab|2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|ab|2发生的概率是P=故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键三、解答题19【答案】 【解析】解:(1)设等比数列an的公比为q4,a1+3,3a2,a3+4构成等差数列23a2=a1+3+a3+4,6q=1+7+q2,解得q=2(2)由(1)可得:an=2n1bn=lna3n+1=ln23n=3nln2数列bn的前n项和Tn=3ln2(1+2+n)=ln220【答案】 【解析】解:四边形ABCD绕AD旋转一周所成的几何体,如右图:S表面=S圆台下底面+S圆台侧面+S圆锥侧面=r22+(r1+r2)l2+r1l1=21【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】()因为所以函数的最小正周期为()由(),得因为,所以,所以所以且当时,取到最大值;当时,取到最小值22【答案】 【解析】解:()由,得,即1x1,即定义域为(1,1),则f(x)=loga(1x)loga(1+x)=loga(1+x)loga(1x)=f(x),则f(x)为奇函数()当0a1时,由f(x)0,即loga(1+x)loga(1x)0,即loga(1+x)loga(1x),则1+x1x,解得1x0,则不等式解集为:(1,0)【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键23【答案】 【解析】解:()设数列an的公比为q,由an0可得q0,且a3a22a1=0,化简得q2q2=0,解得q=2或q=1(舍),a3=a1q2=4a1=8,a1=2,数列an是以首项和公比均为2的等比数列,an=2n;()由(I)知bn=log2an=n,anbn=n2n,Sn=121+222+323+(n1)2n1+n2n,2Sn=122+223+(n2)2n1+(n1)2n+n2n+1,两式相减,得Sn=21+22+23+2n1+2nn2n+1,Sn=n2n+1,Sn=2+(n1)2n+1【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题24【答案】 【解析】解:()f(x)=3ax2+2,若a0,则f(x)0,函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论