




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷龙湖区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知数列an满足log3an+1=log3an+1(nN*),且a2+a4+a6=9,则log(a5+a7+a9)的值是( )AB5C5D2 函数f(x)=Asin(x+)(A0,0)的部分图象如图所示,则f()的值为( )AB0CD3 设函数f(x)=,f(2)+f(log210)=( )A11B8C5D24 过点,的直线的斜率为,则( )A B C D5 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )AB(4+)CD6 已知,则“”是“”的( )A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.7 双曲线:的渐近线方程和离心率分别是( )ABCD8 i是虚数单位,i2015等于( )A1B1CiDi9 下列命题的说法错误的是( )A若复合命题pq为假命题,则p,q都是假命题B“x=1”是“x23x+2=0”的充分不必要条件C对于命题p:xR,x2+x+10 则p:xR,x2+x+10D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”10若复数z满足=i,其中i为虚数单位,则z=( )A1iB1+iC1iD1+i11若a0,b0,a+b=1,则y=+的最小值是( )A2B3C4D512设为虚数单位,则()A B C D二、填空题13【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数和均相切(其中为常数),切点分别为和,则的值为_14某种产品的加工需要 A,B,C,D,E五道工艺,其中 A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种(用数字作答)15已知函数的三个零点成等比数列,则 .16命题p:xR,函数的否定为17已知集合M=x|x|2,xR,N=xR|(x3)lnx2=0,那么MN=18椭圆+=1上的点到直线l:x2y12=0的最大距离为三、解答题19巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+clnx(abc0)()证明:当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f(x0),则称其为“K函数”判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+clnx是否为“K函数”?并证明你的结论 20在正方体中分别为的中点.(1)求证:平面;(2)求异面直线与所成的角.111.Com21已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB平面ABCD,E,F,G分别是线段AB,CD,PD上的点(1)如图1,若G为线段PD的中点,BE=DF=,证明:PB平面EFG;(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由点H到点F的距离与点H到直线AB的距离之差大于4;GHPD22已知函数f(x)=alnx+x2+bx+1在点(1,f(1)处的切线方程为4xy12=0(1)求函数f(x)的解析式;(2)求f(x)的单调区间和极值23已知复数z1满足(z12)(1+i)=1i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z224已知数列an的前n项和Sn=2n219n+1,记Tn=|a1|+|a2|+|an|(1)求Sn的最小值及相应n的值;(2)求Tn龙湖区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:数列an满足log3an+1=log3an+1(nN*),an+1=3an0,数列an是等比数列,公比q=3又a2+a4+a6=9,=a5+a7+a9=339=35,则log(a5+a7+a9)=5故选;B2 【答案】C【解析】解:由图象可得A=, =(),解得T=,=2再由五点法作图可得2()+=,解得:=,故f(x)=sin(2x),故f()=sin()=sin=,故选:C【点评】本题主要考查由函数y=Asin(x+)的部分图象求函数的解析式,属于中档题3 【答案】B【解析】解:f(x)=,f(2)=1+log24=1+2=3,=5,f(2)+f(log210)=3+5=8故选:B【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用4 【答案】【解析】考点:1.斜率;2.两点间距离.5 【答案】 D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,几何体的体积是=,故选D【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察6 【答案】A.【解析】,设,显然是偶函数,且在上单调递增,故在上单调递减,故是充分必要条件,故选A.7 【答案】D【解析】解:双曲线:的a=1,b=2,c=双曲线的渐近线方程为y=x=2x;离心率e=故选 D8 【答案】D【解析】解:i2015=i5034+3=i3=i,故选:D【点评】本题主要考查复数的基本运算,比较基础9 【答案】A【解析】解:A复合命题pq为假命题,则p,q至少有一个命题为假命题,因此不正确;B由x23x+2=0,解得x=1,2,因此“x=1”是“x23x+2=0”的充分不必要条件,正确;C对于命题p:xR,x2+x+10 则p:xR,x2+x+10,正确;D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”,正确故选:A10【答案】A【解析】解: =i,则=i(1i)=1+i,可得z=1i故选:A11【答案】C【解析】解:a0,b0,a+b=1,y=+=(a+b)=2+=4,当且仅当a=b=时取等号y=+的最小值是4故选:C【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题12【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C二、填空题13【答案】【解析】14【答案】24 【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有482=24种,故答案为:24【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础15【答案】考点:三角函数的图象与性质,等比数列的性质,对数运算【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题16【答案】x0R,函数f(x0)=2cos2x0+sin2x03 【解析】解:全称命题的否定是特称命题,即为x0R,函数f(x0)=2cos2x0+sin2x03,故答案为:x0R,函数f(x0)=2cos2x0+sin2x03,17【答案】1,1 【解析】解:合M=x|x|2,xR=x|2x2,N=xR|(x3)lnx2=0=3,1,1,则MN=1,1,故答案为:1,1,【点评】本题主要考查集合的基本运算,比较基础18【答案】4 【解析】解:由题意,设P(4cos,2sin)则P到直线的距离为d=,当sin()=1时,d取得最大值为4,故答案为:4三、解答题19【答案】 【解析】解:()证明:如果g(x)是定义域(0,+)上的增函数,则有g(x)=2ax+b+=0;从而有2ax2+bx+c0对任意x(0,+)恒成立;又a0,则结合二次函数的图象可得,2ax2+bx+c0对任意x(0,+)恒成立不可能,故当a0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;()函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+clnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k=a(x1+x2)+b=2ax0+b;又f(x0)=2ax0+b,故k=f(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+clnx,不妨设0x1x2,则k=2ax0+b+;而g(x0)=2ax0+b+;故=,化简可得,=;设t=,则0t1,lnt=;设s(t)=lnt;则s(t)=0;则s(t)=lnt是(0,1)上的增函数,故s(t)s(1)=0;则lnt;故g(x)=ax2+bx+clnx不是“K函数”【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题20【答案】(1)证明见解析;(2)【解析】(2)延长于,使,连结为所求角.设正方体边长为,则,与所成的角为.考点:直线与平行的判定;异面直线所成的角的计算.【方法点晴】本题主要考查了直线与平面平行的判定与证明、空间中异面直线所成的角的计算,其中解答中涉及到平行四边形的性质、正方体的结构特征、解三角形的相关知识的应用,着重考查了学生的空间想象能力以及学生分析问题和解答问题的能力,本题的解答中根据异面直线所成的角找到角为异面直线所成的角是解答的一个难点,属于中档试题.21【答案】 【解析】(1)证明:依题意,E,F分别为线段BA、DC的三等分点,取CF的中点为K,连结PK,BK,则GF为DPK的中位线,PKGF,PK平面EFG,PK平面EFG,四边形EBKF为平行四边形,BKEF,BK平面EFG,BK平面EFG,PKBK=K,平面EFG平面PKB,又PB平面PKB,PB平面EFG(2)解:连结PE,则PEAB,平面PAB平面ABCD,平面PAB平面ABCD=AB,PE平面PAB,PE平面ABCD,分别以EB,EF,EP为x轴,y轴,z轴,建立空间直角坐标系,P(0,0,),D(1,4,0),=(1,4,),P(0,0,),D(1,4,0),=(1,4,),=(,),G(,),设点H(x,y,0),且1x1,0y4,依题意得:,x216y,(1x1),(i)又=(x+,y,),GHPD,x+4y,即y=,(ii)把(ii)代入(i),得:3x212x440,解得x2+或x2,满足条件的点H必在矩形ABCD内,则有1x1,矩形ABCD内不能找到点H,使之同时满足点H到点F的距离与点H到直线AB的距离之差大于4,GHPD【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识22【答案】 【解析】解:(1)求导f(x)=+2x+b,由题意得:f(1)=4,f(1)=8,则,解得,所以f(x)=12lnx+x210x+1;(2)f(x)定义域为(0,+),f(x)=,令f(x)0,解得:x2或x3,所以f(x)在(0,2)递增,在(2,3)递减,在(3,+)递增,故f(x)极大值=f(2)=12ln215,f(x)极小值=f(3)=12ln32023【答案】 【解析】解:z1=2i设z2=a+2i(aR)z1z2=(2i)(a+2i)=(2a+2)+(4a)iz1z2是实数4a=0解得a=4所以z2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为024【答案】 【解析】解:(1)Sn=2n219n+1=2,n=5时,Sn取得最小值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023国家能源投资集团有限责任公司第一批社会招聘笔试备考题库附答案详解(突破训练)
- 2025福建晋园发展集团有限责任公司权属子公司招聘7人笔试备考题库及答案详解(易错题)
- 2025年河北省定州市辅警招聘考试试题题库含答案详解(基础题)
- 2025年K12辅导行业品牌建设策略:双减政策下的转型路径分析报告
- 初中生物八年级下册统编教案
- 肾结石成分与代谢评估研究2025
- 2025届高考物理大一轮复习课件 第七章 第35课时 专题强化:碰撞模型及拓展
- 建设工程履约担保制度研究
- 项目投资笔试题及答案
- 江苏省高品质高中2025届高三下学期5月调研测试生物试卷(有答案)
- 2024年湖南省中考英语真题卷及答案解析
- XX市慈善会定向捐赠三方协议书
- 2024年广西高考物理试卷(含答案解析)
- 砂金矿勘探合作协议书范文模板
- 大型机械运输服务方案
- 汽修厂安全生产标准化管理体系全套资料汇编(2019-2020新标准实施模板)
- 《少年有梦》大单元教学设计
- Python程序设计项目化教程(微课版)张玉叶课后习题答案
- 廉江旅游策划方案
- 福建省南平市2025届高三化学第三次综合质量检测试题含解析
- 中国空气质量改善的健康效应评估
评论
0/150
提交评论