




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东昌区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数f(x)=x的图象关于( )Ay轴对称B直线y=x对称C坐标原点对称D直线y=x对称2 一个几何体的三视图如图所示,如果该几何体的侧面面积为12,则该几何体的体积是( )A4B12C16D483 己知y=f(x)是定义在R上的奇函数,当x0时,f(x)=x+2,那么不等式2f(x)10的解集是( )AB或CD或4 已知PD矩形ABCD所在的平面,图中相互垂直的平面有( )A2对B3对C4对D5对5 设a=60.5,b=0.56,c=log0.56,则( )AcbaBcabCbacDbca6 已知均为正实数,且,则( )A B C D7 若等式(2x1)2014=a0+a1x+a2x2+a2014x2014对于一切实数x都成立,则a0+1+a2+a2014=( )ABCD08 某几何体的三视图如图所示,则该几何体为( )A四棱柱 B四棱锥 C三棱台 D三棱柱 9 已知函数f(x)的图象如图,则它的一个可能的解析式为( )Ay=2By=log3(x+1)Cy=4Dy=10设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD11已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是( )ABCD12设偶函数f(x)在0,+)单调递增,则使得f(x)f(2x1)成立的x的取值范围是( )A(,1)B(,)(1,+)C(,)D(,)(,+)二、填空题13已知是函数两个相邻的两个极值点,且在处的导数,则_14抛物线y2=8x上到焦点距离等于6的点的坐标是15函数f(x)=log(x22x3)的单调递增区间为16在ABC中,点D在边AB上,CDBC,AC=5,CD=5,BD=2AD,则AD的长为17已知关于的不等式的解集为,则关于的不等式的解集为_.18(本小题满分12分)点M(2pt,2pt2)(t为常数,且t0)是拋物线C:x22py(p0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值三、解答题19如图,四边形ABCD与AABB都是边长为a的正方形,点E是AA的中点,AA平面ABCD(1)求证:AC平面BDE;(2)求体积VAABCD与VEABD的比值20已知m0,函数f(x)=2|x1|2x+m|的最大值为3()求实数m的值;()若实数a,b,c满足a2b+c=m,求a2+b2+c2的最小值 21(1)化简:(2)已知tan=3,计算 的值22如图,四边形ABCD内接于O,过点A作O的切钱EP交CB 的延长线于P,己知PAB=25(1)若BC是O的直径,求D的大小;(2)若DAE=25,求证:DA2=DCBP 23已知等差数列an,等比数列bn满足:a1=b1=1,a2=b2,2a3b3=1()求数列an,bn的通项公式;()记cn=anbn,求数列cn的前n项和Sn24已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由东昌区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:f(x)=+x=f(x)是奇函数,所以f(x)的图象关于原点对称故选C2 【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,几何体的侧面积为22h=12,解得h=3,几何体的体积V=223=12故选B【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题3 【答案】B【解析】解:因为y=f(x)为奇函数,所以当x0时,x0,根据题意得:f(x)=f(x)=x+2,即f(x)=x2,当x0时,f(x)=x+2,代入所求不等式得:2(x+2)10,即2x3,解得x,则原不等式的解集为x;当x0时,f(x)=x2,代入所求的不等式得:2(x2)10,即2x5,解得x,则原不等式的解集为0x,综上,所求不等式的解集为x|x或0x故选B4 【答案】D【解析】解:PD矩形ABCD所在的平面且PD面PDA,PD面PDC,面PDA面ABCD,面PDC面ABCD,又四边形ABCD为矩形BCCD,CDADPD矩形ABCD所在的平面PDBC,PDCDPDAD=D,PDCD=DCD面PAD,BC面PDC,AB面PAD,CD面PDC,BC面PBC,AB面PAB,面PDC面PAD,面PBC面PCD,面PAB面PAD综上相互垂直的平面有5对故答案选D5 【答案】A【解析】解:a=60.51,0b=0.561,c=log0.560,cba故选:A【点评】本题考查了指数函数与对数函数的单调性,属于基础题6 【答案】A【解析】考点:对数函数,指数函数性质7 【答案】B【解析】解法一:,(C为常数),取x=1得,再取x=0得,即得,故选B解法二:,故选B【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用8 【答案】【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.9 【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4的值域为(,4)(4,+),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档10【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C11【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|AC|,因为|OC|=,|AC|2=1|OC|2,所以2()21,所以a1或a1,因为1,所以a,所以实数a的取值范围是,故选:A【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题12【答案】A【解析】解:因为f(x)为偶函数,所以f(x)f(2x1)可化为f(|x|)f(|2x1|)又f(x)在区间0,+)上单调递增,所以|x|2x1|,即(2x1)2x2,解得x1,所以x的取值范围是(,1),故选:A二、填空题13【答案】【解析】考点:三角函数图象与性质,函数导数与不等式【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和,再结合极值点的导数等于零,可求出.在求的过程中,由于题目没有给定它的取值范围,需要用来验证.求出表达式后,就可以求出.114【答案】(4,) 【解析】解:抛物线方程为y2=8x,可得2p=8, =2抛物线的焦点为F(2,0),准线为x=2设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=m+2=6,解得m=4,n2=8m=32,可得n=4,因此,点P的坐标为(4,)故答案为:(4,)【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标着重考查了抛物线的定义与标准方程等知识,属于基础题15【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)16【答案】5 【解析】解:如图所示:延长BC,过A做AEBC,垂足为E,CDBC,CDAE,CD=5,BD=2AD,解得AE=,在RTACE,CE=,由得BC=2CE=5,在RTBCD中,BD=10,则AD=5,故答案为:5【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题17【答案】【解析】考点:一元二次不等式的解法.18【答案】【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y2pt2k(x2pt)将与拋物线x22py联立得,x22pkx4p2t(kt)0,解得x12pt,x22p(kt),将x22p(kt)代入x22py得y22p(kt)2,P点的坐标为(2p(kt),2p(kt)2)由于l1与l2的倾斜角互补,点Q的坐标为(2p(kt),2p(kt)2),kPQ2t,即直线PQ的斜率为2t.(2)由y得y,拋物线C在M(2pt,2pt2)处的切线斜率为k2t.其切线方程为y2pt22t(x2pt),又C的准线与y轴的交点T的坐标为(0,)2pt22t(2pt)解得t,即t的值为.三、解答题19【答案】 【解析】(1)证明:设BD交AC于M,连接MEABCD为正方形,M为AC中点,又E为AA的中点,ME为AAC的中位线,MEAC又ME平面BDE,AC平面BDE,AC平面BDE(2)解:VEABD=VAABCDVAABCD:VEABD=4:120【答案】 【解析】解:()f(x)=2|x1|2x+m|=|2x2|2x+m|(2x2)(2x+m)|=|m+2|m0,f(x)|m+2|=m+2,当x=1时取等号,f(x)max=m+2,又f(x)的最大值为3,m+2=3,即m=1()根据柯西不等式得:(a2+b2+c2)12+(2)2+12(a2b+c)2,a2b+c=m=1,当,即时取等号,a2+b2+c2的最小值为【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题21【答案】 【解析】解:(1)=costan=sin(2)已知tan=3, =【点评】本题主要考查诱导公式、同角三角函数的基本关系,属于基础题22【答案】 【解析】解:(1)EP与O相切于点A,ACB=PAB=25,又BC是O的直径,ABC=65,四边形ABCD内接于O,ABC+D=180,D=115证明:(2)DAE=25,ACD=PAB,D=PBA,ADCPBA,又DA=BA,DA2=DCBP 23【答案】 【解析】解:(I)设等差数列an的公差为d,等比数列bn的公比为q:a1=b1=1,a2=b2,2a3b3=11+d=q,2(1+2d)q2=1,解得或an=1,bn=1;或an=1+2(n1)=2n1,bn=3n1(II)当时,cn=anbn=1,Sn=n当时,cn=anbn=(2n1)3n1,Sn=1+33+532+(2n1)3n1,3Sn=3+332+(2n3)3n1+(2n1)3n,2Sn=1+2(3+32+3n1)(2n1)3n=1(2n1)3n=(22n)3n2,Sn=(n1)3n+1【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题24【答案】 【解析】解:(1)依题意,可设椭圆C的方程为(a0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年数据安全管理员试题
- 基于可食性景观理念的武汉社区屋顶空间设计研究
- 人造草坪材料与声学性能的逆向工程研究-洞察阐释
- 谐波干扰抑制技术-洞察阐释
- 绿色生产工艺的创新与应用实践
- 社区家庭教育支持评估与持续改进路径
- 2025至2030年中国烧火鸡香料行业投资前景及策略咨询报告
- 当前劳动关系发展现状与面临的主要问题
- 2025至2030年中国灼热丝试验箱行业投资前景及策略咨询报告
- 2025至2030年中国流体输送PVC软管行业投资前景及策略咨询报告
- GB/T 44265-2024电力储能电站钠离子电池技术规范
- 人教版八年级下册英语词汇专项训练及解析答案
- 2024年浙江省湖州市长兴县小升初数学试卷
- YC-T 591-2021 烟草行业实验室安全管理要求
- 《多联机空调系统工程技术规程》JGJ174-2010
- 人教部编版语文六年级下册1-6单元作文习作范文
- 《医疗和疾控机构后勤安全生产工作管理指南2023版》
- 公路工程投标方案(技术标)
- 2024年广州市“广汽杯”班组长综合管理技能竞赛考试题库-上(单选题)
- 2024年上海市中考英语试卷及答案
- GB/T 25390-2024风能发电系统风力发电机组球墨铸铁件
评论
0/150
提交评论