




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷新城区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 某几何体的三视图如图所示,则它的表面积为( )ABCD2 “m=1”是“直线(m2)x3my1=0与直线(m+2)x+(m2)y+3=0相互垂直”的( )A必要而不充分条件B充分而不必要条件C充分必要条件D既不充分也不必要条件3 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D84 已知集合A=y|y=x2+2x3,则有( )AABBBACA=BDAB=5 复数i1(i是虚数单位)的虚部是( )A1B1CiDi6 随机变量x1N(2,1),x2N(4,1),若P(x13)=P(x2a),则a=( )A1B2C3D47 若全集U=1,0,1,2,P=xZ|x22,则UP=( )A2B0,2C1,2D1,0,28 已知数列的首项为,且满足,则此数列的第4项是( )A1 B C. D9 已知为的三个角所对的边,若,则( )A23 B43 C31 D32【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力10已知双曲线=1(a0,b0)的左右焦点分别为F1,F2,若双曲线右支上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为( )A1eBeCeD1e11P是双曲线=1(a0,b0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则PF1F2的内切圆圆心的横坐标为( )AaBbCcDa+bc12设k=1,2,3,4,5,则(x+2)5的展开式中xk的系数不可能是( )A10B40C50D80二、填空题13【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为_14若函数y=f(x)的定义域是,2,则函数y=f(log2x)的定义域为15抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分已知P(400X450)=0.3,则P(550X600)=16设双曲线=1,F1,F2是其两个焦点,点M在双曲线上若F1MF2=90,则F1MF2的面积是17设集合A=3,0,1,B=t2t+1若AB=A,则t=18设f(x)是定义在R上的周期为2的函数,当x1,1)时,f(x)=,则f()=三、解答题19如图,在长方体ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动(1)证明:BC1平面ACD1(2)当时,求三棱锥EACD1的体积20如图,在ABC中,BC边上的中线AD长为3,且sinB=,cosADC=()求sinBAD的值;()求AC边的长21已知函数f(x)的定义域为x|xk,kZ,且对定义域内的任意x,y都有f(xy)=成立,且f(1)=1,当0x2时,f(x)0(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在2,3上的最值22已知直角梯形ABCD中,ABCD,过A作AECD,垂足为E,G、F分别为AD、CE的中点,现将ADE沿AE折叠,使得DEEC(1)求证:FG面BCD;(2)设四棱锥DABCE的体积为V,其外接球体积为V,求V:V的值23已知函数f(x)=ax(a0且a1)的图象经过点(2,)(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x0)的值域24(本小题满分12分) 如图中,已知点在边上,且,()求的长;()求新城区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,母线长为,圆锥的表面积S=S底面+S侧面=12+22+=2+故选A【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量2 【答案】B【解析】解:当m=0时,两条直线方程分别化为:2x1=0,2x2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:6y1=0,4x+3=0,此时两条直线相互垂直;当m0,2时,两条直线相互垂直,则=1,解得m=1综上可得:两条直线相互垂直的充要条件是:m=1,2“m=1”是“直线(m2)x3my1=0与直线(m+2)x+(m2)y+3=0相互垂直”的充分不必要条件故选:B【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题3 【答案】B【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力4 【答案】B【解析】解:y=x2+2x3=(x+1)24,y4则A=y|y4x0,x+2=2(当x=,即x=1时取“=”),B=y|y2,BA故选:B【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项5 【答案】A【解析】解:由复数虚部的定义知,i1的虚部是1,故选A【点评】该题考查复数的基本概念,属基础题6 【答案】C【解析】解:随机变量x1N(2,1),图象关于x=2对称,x2N(4,1),图象关于x=4对称,因为P(x13)=P(x2a),所以32=4a,所以a=3,故选:C【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解7 【答案】A【解析】解:x22xP=xZ|x22=x|x,xZ|=1,0,1,又全集U=1,0,1,2,UP=2故选:A8 【答案】B【解析】 9 【答案】C【解析】由已知等式,得,由正弦定理,得,则,所以,故选C10【答案】B【解析】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO=c,MF1F2=60,PF1F2=30,设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2a2)x22ca2xa2c23a2b2=0,则方程有两个异号实数根,则有3b2a20,即有3b2=3c23a2a2,即ca,则有e=故选:B11【答案】A【解析】解:如图设切点分别为M,N,Q,则PF1F2的内切圆的圆心的横坐标与Q横坐标相同由双曲线的定义,PF1PF2=2a由圆的切线性质PF1PF2=FIMF2N=F1QF2Q=2a,F1Q+F2Q=F1F2=2c,F2Q=ca,OQ=a,Q横坐标为a故选A【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义12【答案】 C【解析】二项式定理【专题】计算题【分析】利用二项展开式的通项公式求出展开式的xk的系数,将k的值代入求出各种情况的系数【解答】解:(x+2)5的展开式中xk的系数为C5k25k当k1时,C5k25k=C5124=80,当k=2时,C5k25k=C5223=80,当k=3时,C5k25k=C5322=40,当k=4时,C5k25k=C542=10,当k=5时,C5k25k=C55=1,故展开式中xk的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数二、填空题13【答案】【解析】结合函数的解析式可得:,对函数求导可得:,故切线的斜率为,则切线方程为:,即,圆:的圆心为,则:.14【答案】,4 【解析】解:由题意知log2x2,即log2log2xlog24,x4故答案为:,4【点评】本题考查函数的定义域及其求法,正确理解“函数y=f(x)的定义域是,2,得到log2x2”是关键,考查理解与运算能力,属于中档题15【答案】0.3【解析】离散型随机变量的期望与方差【专题】计算题;概率与统计【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550600)【解答】解:某校高三学生成绩(总分750分)近似服从正态分布,平均成绩为500分,正态分布曲线的对称轴为x=500,P(400450)=0.3,根据对称性,可得P(550600)=0.3故答案为:0.3【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键16【答案】9 【解析】解:双曲线=1的a=2,b=3,可得c2=a2+b2=13,又|MF1|MF2|=2a=4,|F1F2|=2c=2,F1MF2=90,在F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|MF2|)2+2|MF1|MF2|,即4c2=4a2+2|MF1|MF2|,可得|MF1|MF2|=2b2=18,即有F1MF2的面积S=|MF1|MF2|sinF1MF2=181=9故答案为:9【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题17【答案】0或1 【解析】解:由AB=A知BA,t2t+1=3t2t+4=0,无解 或t2t+1=0,无解 或t2t+1=1,t2t=0,解得 t=0或t=1故答案为0或1【点评】本题考查集合运算及基本关系,掌握好概念是基础正确的转化和计算是关键18【答案】1 【解析】解:f(x)是定义在R上的周期为2的函数,=1故答案为:1【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”三、解答题19【答案】 【解析】(1)证明:ABC1D1,AB=C1D1,四边形ABC1D1是平行四边形,BC1AD1,又AD1平面ACD1,BC1平面ACD1,BC1平面ACD1(2)解:SACE=AEAD=V=V=【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题20【答案】 【解析】解:()由题意,因为sinB=,所以cosB=又cosADC=,所以sinADC=所以sinBAD=sin(ADCB)=()=()在ABD中,由正弦定理,得,解得BD=故BC=15,从而在ADC中,由余弦定理,得AC2=9+2252315()=,所以AC=【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题21【答案】 【解析】(1)证明:函数f(x)的定义域为x|xk,kZ,关于原点对称又f(xy)=,所以f(x)=f(1x)1= = = = = =,故函数f(x)奇函数(2)令x=1,y=1,则f(2)=f1(1)= =,令x=1,y=2,则f(3)=f1(2)= = =,f(x2)=,f(x4)=,则函数的周期是4先证明f(x)在2,3上单调递减,先证明当2x3时,f(x)0,设2x3,则0x21,则f(x2)=,即f(x)=0,设2x1x23,则f(x1)0,f(x2)0,f(x2x1)0,则f(x1)f(x2)=,f(x1)f(x2),即函数f(x)在2,3上为减函数,则函数f(x)在2,3上的最大值为f(2)=0,最小值为f(3)=1【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大22【答案】 【解析】解:(1)证明:取AB中点H,连接GH,FH,GHBD,FHBC,GH面BCD,FH面BCD面FHG面BCD,GF面BCD(2)V=又外接球半径R=V=V:V=【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E点三条棱互相垂直,故棱锥的外
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城市公园草坪景观养护与美化合作协议
- 2025年宠物国际托运与宠物用品全球配送服务协议
- 2025年城市综合体餐饮窗口租赁合同食品安全责任及管理人员考核办法
- 2025年老年公寓租赁合同标准范本下载
- 2025年全球贸易结算及跨境支付清算综合服务合同
- 2025年度绿色道路建筑材料质量认证与性能优化合同
- 2025年度货运保险方案与全球贸易链保险合同
- 2025年度个人债务保全及执行跟踪服务合同
- 2025年度生态旅游开发承包经营合同
- 2025年北京四合院传承买卖合同文化保护与传承版
- 机械通气临床应用指南
- 2025年秋季新学期教学工作会议上校长讲话:我们是不是“跑偏”了
- 2025年计算机一级考试题库(附答案)
- 2025年全国统一高考数学试卷(新高考二卷)试卷与答案
- 人卵母细胞成熟度分级
- 2025年高考真题【地理】试卷含答案(全国新课标卷)
- 2025年四川大学生服务基层项目招募考试(医学基础知识)历年参考题库含答案详解(5套)
- 刑法基本原则课件
- 2025年会议接待考试题库
- 交通事故处理交通事故委托书
- 2025年贵州省中考英语试卷
评论
0/150
提交评论