




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
井陉矿区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知向量=(1,2),=(m,1),如果向量与平行,则m的值为( )ABC2D22 已知集合A=4,5,6,8,B=3,5,7,8,则集合AB=( )A5,8B4,5,6,7,8C3,4,5,6,7,8D4,5,6,7,83 已知不等式组表示的平面区域为,若内存在一点,使,则的取值范围为( )A B C D4 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( )A. B. C. 1 D. 【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力5 设Sn为等比数列an的前n项和,已知3S3=a42,3S2=a32,则公比q=( )A3B4C5D66 已知,若存在,使得,则的取值范围是( )A B C. D7 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等据此可判断丙必定值班的日期是( )A2日和5日B5日和6日C6日和11日D2日和11日8 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A54B162C54+18D162+189 已知集合,则满足条件的集合的个数为 A、 B、 C、 D、10抛物线y=4x2的焦点坐标是( )A(0,1)B(1,0)CD11若函数在上单调递增,则实数的取值范围为( )A BC. D12高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )ABCD二、填空题13已知数列的首项,其前项和为,且满足,若对,恒成立,则的取值范围是_【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力14若命题“xR,x22x+m0”是假命题,则m的取值范围是1517已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称16如果定义在R上的函数f(x),对任意x1x2都有x1f(x1)+x2f(x2)x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数f(x)=3x+1 f(x)=()x+1f(x)=x2+1 f(x)=其中是“H函数”的有(填序号)17已知f(x)=,则ff(0)=18函数y=lgx的定义域为三、解答题19已知等差数列的公差,()求数列的通项公式;()设,记数列前n项的乘积为,求的最大值20某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:推销员编号12345工作年限x/年35679推销金额y/万元23345(1)以工作年限为自变量x,推销金额为因变量y,作出散点图;(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额 21某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组50,60),第二组60,70),第五组90,100如图所示是按上述分组方法得到的频率分布直方图()若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;()从测试成绩在50,60)90,100内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|mn|10”概率 22(本小题满分10分)如图O经过ABC的点B,C与AB交于E,与AC交于F,且AEAF.(1)求证EFBC;(2)过E作O的切线交AC于D,若B60,EBEF2,求ED的长23如图,四边形ABCD内接于O,过点A作O的切钱EP交CB 的延长线于P,己知PAB=25(1)若BC是O的直径,求D的大小;(2)若DAE=25,求证:DA2=DCBP 24已知集合A=x|2x6,集合B=x|x3(1)求CR(AB);(2)若C=x|xa,且AC,求实数a的取值范围井陉矿区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:向量,向量与平行,可得2m=1解得m=故选:B2 【答案】C【解析】解:A=4,5,6,8,B=3,5,7,8,AB=3,4,5,6,7,8故选C3 【答案】A 【解析】解析:本题考查线性规划中最值的求法平面区域如图所示,先求的最小值,当时,在点取得最小值;当时,在点取得最小值若内存在一点,使,则有的最小值小于,或,选A4 【答案】D【解析】5 【答案】B【解析】解:Sn为等比数列an的前n项和,3S3=a42,3S2=a32,两式相减得3a3=a4a3,a4=4a3,公比q=4故选:B6 【答案】A 【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值. 【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题利用导数研究函数的单调性进一步求函数最值的步骤:确定函数的定义域;对求导;令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;根据单调性求函数的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小). 7 【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础8 【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=366+366+=162+18,故选:D9 【答案】D【解析】, ,可以为,10【答案】C【解析】解:抛物线y=4x2的标准方程为 x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,),故选C【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键11【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式. 12【答案】 D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1)(1)=,故目标被击中的概率为1=,故选:D【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题二、填空题13【答案】 14【答案】m1 【解析】解:若命题“xR,x22x+m0”是假命题,则命题“xR,x22x+m0”是真命题,即判别式=44m0,解得m1,故答案为:m115【答案】 【解析】解:f(x)=axg(x)(a0且a1),=ax,又f(x)g(x)f(x)g(x),()=0,=ax是增函数,a1,+=a1+a1=,解得a=或a=2综上得a=2数列为2n数列的前n项和大于62,2+22+23+2n=2n+1262,即2n+164=26,n+16,解得n5n的最小值为6故答案为:6【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题16【答案】 【解析】解:对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)x1f(x2)+x2f(x1)恒成立,不等式等价为(x1x2)f(x1)f(x2)0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);f(x)在R递增,符合题意;f(x)在R递减,不合题意;f(x)在(,0)递减,在(0,+)递增,不合题意;f(x)在R递增,符合题意;故答案为:17【答案】1 【解析】解:f(0)=01=1,ff(0)=f(1)=21=1,故答案为:1【点评】本题考查了分段函数的简单应用18【答案】x|x0 【解析】解:对数函数y=lgx的定义域为:x|x0故答案为:x|x0【点评】本题考查基本函数的定义域的求法三、解答题19【答案】【解析】【知识点】等差数列【试题解析】()由题意,得解得或(舍)所以()由(),得所以所以只需求出的最大值由(),得因为,所以当,或时,取到最大值所以的最大值为20【答案】 【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为则,年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4(3)由(2)可知,当x=11时, =0.5x+0.4=0.511+0.4=5.9(万元)可以估计第6名推销员的年推销金额为5.9万元 21【答案】 【解析】解:(I)由直方图知,成绩在60,80)内的人数为:5010(0.18+0.040)=29所以该班在这次数学测试中成绩合格的有29人(II)由直方图知,成绩在50,60)内的人数为:50100.004=2,设成绩为x、y成绩在90,100的人数为50100.006=3,设成绩为a、b、c,若m,n50,60)时,只有xy一种情况,若m,n90,100时,有ab,bc,ac三种情况,若m,n分别在50,60)和90,100内时,有 a b c x xa xb xc y ya yb yc共有6种情况,所以基本事件总数为10种,事件“|mn|10”所包含的基本事件个数有6种【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:组距=频率;即可把所求范围内的频率求出,进而求该范围的人数22【答案】【解析】解:(1)证明:AEAF,AEFAFE.又B,C,F,E四点共圆,ABCAFE,AEFACB,又AEFAFE,EFBC. (2)由(1)与B60知ABC为正三角形,又EBEF2,AFFC2,设DEx,DFy,则AD2y,在AED中,由余弦定理得DE2AE2AD22ADAEcos A.即x2(2y)2222(2y)2,x2y242y,由切割线定理得DE2DFDC,即x2y(y2),x2y22y,由联解得y1,x,ED.23【答案】 【解析】解:(1)EP与O相切于点A,ACB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年如何应对烷基化工艺作业的面试挑战答案全解析
- 2025年建筑工程施工现场管理面试宝典与模拟题集
- 2025年软件开发工程师面试宝典知识点预测题
- 2025年物资储备仓库运输调度员职位面试高频词汇解析与答案
- 申诉业务知识培训课件
- 2025年中级炼油装置操作工技能考核大纲及样题解析
- 甲状腺超声TI-RADS分类课
- 脑卒中吞咽障碍护理
- 青少年普法宣传教育宣讲
- 单元统整教学课件模板
- 《工业战略性新兴产业分类目录(2023)》
- DB32-T4743-2024重点化工企业全流程自动化控制配备和提升规范
- 腺垂体功能减退 教案
- 交通银行个人消费贷款合同(格式文本)
- 2025睿实消防自动跟踪定位射流灭火系统说明书
- 《餐饮食堂厨房消防安全》知识培训
- 绿色施工管理体系与管理制度模版
- 质量控制在银行业中的应用
- 热射病的护理诊断和措施
- 北师大版二年级数学上册计算题专项复习大全120
- 北京市海淀区2023-2024年五年级上学期数学期末试卷
评论
0/150
提交评论