




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷温州市外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若某算法框图如图所示,则输出的结果为( )A7B15C31D632 设l,m,n表示不同的直线,表示不同的平面,给出下列四个命题:若ml,m,则l;若ml,m,则l;若=l,=m,=n,则lmn;若=l,=m,=n,n,则lm其中正确命题的个数是( )A1B2C3D43 若实数x,y满足,则(x3)2+y2的最小值是( )AB8C20D24 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A92%B24%C56%D5.6%5 已知函数f(x)的定义域为a,b,函数y=f(x)的图象如下图所示,则函数f(|x|)的图象是( )ABCD6 已知命题p:“xR,ex0”,命题q:“x0R,x02x02”,则( )A命题pq是假命题B命题pq是真命题C命题p(q)是真命题D命题p(q)是假命题7 若复数z=2i ( i为虚数单位),则=( )A4+2iB20+10iC42iD8 已知函数f(x)=ax33x2+1,若f(x)存在唯一的零点x0,且x00,则实数a的取值范围是( )A(1,+)B(2,+)C(,1)D(,2)9 下列说法正确的是( ) A.圆锥的侧面展开图是一个等腰三角形; B.棱柱即是两个底面全等且其余各面都是矩形的多面体; C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥; D.通过圆台侧面上的一点,有无数条母线. 10已知m,n为不同的直线,为不同的平面,则下列说法正确的是( )Am,nmnBm,nmnCm,n,mnDn,n11在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点若a为无理数,则在过点P(a,)的所有直线中( )A有无穷多条直线,每条直线上至少存在两个有理点B恰有n(n2)条直线,每条直线上至少存在两个有理点C有且仅有一条直线至少过两个有理点D每条直线至多过一个有理点12已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=( )A2B6C4D2二、填空题13 设函数,有下列四个命题:若对任意,关于的不等式恒成立,则;若存在,使得不等式成立,则;若对任意及任意,不等式恒成立,则;若对任意,存在,使得不等式成立,则其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.14图中的三个直角三角形是一个体积为的几何体的三视图,则_.15已知含有三个实数的集合既可表示成,又可表示成,则 .16计算:51=17【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy中,P是曲线上一点,直线经过点P,且与曲线C在P点处的切线垂直,则实数c的值为_18已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项是三、解答题19ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2c2)=3ab()求cos2C和角B的值;()若ac=1,求ABC的面积20已知函数f(x)=xlnx+ax(aR)()若a=2,求函数f(x)的单调区间;()若对任意x(1,+),f(x)k(x1)+axx恒成立,求正整数k的值(参考数据:ln2=0.6931,ln3=1.0986) 21已知f(x)=(1+x)m+(1+2x)n(m,nN*)的展开式中x的系数为11(1)求x2的系数取最小值时n的值(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和22在中,.(1)求的值;(2)求的值。23设定义在(0,+)上的函数f(x)=,g(x)=,其中nN*()求函数f(x)的最大值及函数g(x)的单调区间;()若存在直线l:y=c(cR),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值(参考数据:ln41.386,ln51.609)24本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,nN的函数解析式;商店记录了50天该商品的日需求量单位:件,整理得下表:日需求量n89101112频数91115105假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间内的概率.温州市外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A5,B=3,A=2满足条件A5,B=7,A=3满足条件A5,B=15,A=4满足条件A5,B=31,A=5满足条件A5,B=63,A=6不满足条件A5,退出循环,输出B的值为63故选:D【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题2 【答案】 B【解析】解:若ml,m,则由直线与平面垂直的判定定理,得l,故正确;若ml,m,则l或l,故错误;如图,在正方体ABCDA1B1C1D1中,平面ABB1A1平面ABCD=AB,平面ABB1A1平面BCC1B1=BB1,平面ABCD平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若=l,=m,=n,则lmn不成立,故是假命题;若=l,=m,=n,n,则由=n知,n且n,由n及n,=m,得nm,同理nl,故ml,故命题正确故选:B【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养3 【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离dmin=,(x3)2+y2的最小值是:故选:A【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题4 【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.03210+0.02410=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是5 【答案】B【解析】解:y=f(|x|)是偶函数,y=f(|x|)的图象是由y=f(x)把x0的图象保留,x0部分的图象关于y轴对称而得到的故选B【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题6 【答案】 C【解析】解:命题p:“xR,ex0”,是真命题,命题q:“x0R,x02x02”,即x0+20,即: +0,显然是假命题,pq真,pq假,p(q)真,p(q)假,故选:C【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题7 【答案】A【解析】解:z=2i,=,=10=4+2i,故选:A【点评】本题考查复数的运算,注意解题方法的积累,属于基础题8 【答案】D【解析】解:f(x)=ax33x2+1,f(x)=3ax26x=3x(ax2),f(0)=1;当a=0时,f(x)=3x2+1有两个零点,不成立;当a0时,f(x)=ax33x2+1在(,0)上有零点,故不成立;当a0时,f(x)=ax33x2+1在(0,+)上有且只有一个零点;故f(x)=ax33x2+1在(,0)上没有零点;而当x=时,f(x)=ax33x2+1在(,0)上取得最小值;故f()=3+10;故a2;综上所述,实数a的取值范围是(,2);故选:D9 【答案】C【解析】考点:几何体的结构特征.10【答案】D【解析】解:在A选项中,可能有n,故A错误;在B选项中,可能有n,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确故选:D【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养11【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1x2时,直线的斜率存在,且有,又x2a为无理数,而为有理数,所以只能是,且y2y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C故选:C【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目12【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题二、填空题13【答案】【解析】14【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且,所以三棱锥的体积为,解得.考点:几何体的三视图与体积.15【答案】-1【解析】试题分析:由于,所以只能,所以。考点:集合相等。16【答案】9 【解析】解:51=(5)(9)=9,51=9,故答案为:917【答案】4ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。18【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题三、解答题19【答案】 【解析】解:(I)由cosA=,0A,sinA=,5(a2+b2c2)=3ab,cosC=,0C,sinC=,cos2C=2cos2C1=,cosB=cos(A+C)=cosAcosC+sinAsinC=+=0B,B=(II)=,a=c,ac=1,a=,c=1,S=acsinB=1=【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识考查学生对基础知识的综合运用20【答案】 【解析】解:(I)a=2时,f(x)=xlnx2x,则f(x)=lnx1令f(x)=0得x=e,当0xe时,f(x)0,当xe时,f(x)0,f(x)的单调递减区间是(0,e),单调递增区间为(e,+)(II)若对任意x(1,+),f(x)k(x1)+axx恒成立,则xlnx+axk(x1)+axx恒成立,即k(x1)xlnx+axax+x恒成立,又x10,则k对任意x(1,+)恒成立,设h(x)=,则h(x)=设m(x)=xlnx2,则m(x)=1,x(1,+),m(x)0,则m(x)在(1,+)上是增函数m(1)=10,m(2)=ln20,m(3)=1ln30,m(4)=2ln40,存在x0(3,4),使得m(x0)=0,当x(1,x0)时,m(x)0,即h(x)0,当x(x0,+)时,m(x)0,h(x)0,h(x)在(1,x0)上单调递减,在(x0,+)上单调递增,h(x)的最小值hmin(x)=h(x0)=m(x0)=x0lnx02=0,lnx0=x02h(x0)=x0khmin(x)=x03x04,k3k的值为1,2,3【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题 21【答案】 【解析】【专题】计算题【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,1,两式子相加求出展开式中x的奇次幂项的系数之和【解答】解:(1)由已知Cm1+2Cn1=11,m+2n=11,x2的系数为Cm2+22Cn2=+2n(n1)=+(11m)(1)=(m)2+mN*,m=5时,x2的系数取得最小值22,此时n=3(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,f(x)=(1+x)5+(1+2x)3设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=1,a0a1+a2a3+a4a5=1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题22【答案】 【解析】解:()在中,根据正弦定理,于是()在中,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 推动县域医疗资源共享与区域合作机制建设
- 生物技术发展与生物医药应用试题
- 建立教育家精神的跨学科整合与人才培养新路径
- 建立农村流行病监测与快速响应体系
- 公司股东股份转让协议细节条款说明
- 光伏发电系统对能源结构转型的影响
- 高新科技成果转化应用合同协议书
- 医疗器械采购合同书细节
- 2025年艺术与文化传承考试试卷及答案分享
- 2025年视觉艺术作品鉴赏考试试卷及答案
- 2023陕西中考数学(副题)含答案解析版
- 李可老中医急危重症疑难病经验专辑
- LY/T 1417-2023航空用胶合板
- 23秋国家开放大学《物流学概论》形考作业1-4参考答案
- 2023高教版中职中国特色社会主义基础模块课程标准
- 林区施工防火安全施工方案
- 充电桩维保合同书样本
- 16J934-3中小学校建筑设计常用构造做法
- 我的家乡潍坊昌邑宣传介绍课件
- 国开学习网《中国古代文化常识》形考任务1-3答案
- 食材配送服务方投标方案(技术标)
评论
0/150
提交评论