




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
滨江区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数y=ax(b+1)(a0,a1)的图象在第一、三、四象限,则有( )Aa1且b1Ba1且b0C0a1且b0D0a1且b02 定义在1,+)上的函数f(x)满足:当2x4时,f(x)=1|x3|;f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是( )A1B2C或3D1或23 已知函数y=f(x)对任意实数x都有f(1+x)=f(1x),且函数f(x)在1,+)上为单调函数若数列an是公差不为0的等差数列,且f(a6)=f(a23),则an的前28项之和S28=( )A7B14C28D564 若复数z=(其中aR,i是虚数单位)的实部与虚部相等,则a=( )A3B6C9D125 设函数,则使得的自变量的取值范围为( )A BC D6 函数y=lnx(1xe2) 的值域是( )A0,2B2,0C,0D0,7 设Sn为等差数列an的前n项和,已知在Sn中有S170,S180,那么Sn中最小的是( )AS10BS9CS8DS78 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A1 B2 C4 D69 数列1,3,6,10,的一个通项公式是( )A B C D10已知等比数列an的前n项和为Sn,若=4,则=( )A3B4CD1311给出以下四个说法:绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;线性回归直线一定经过样本中心点,;设随机变量服从正态分布N(1,32)则p(1)=;对分类变量X与Y它们的随机变量K2的观测值k越大,则判断“与X与Y有关系”的把握程度越小其中正确的说法的个数是( )A1B2C3D412袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红、黑球各一个二、填空题13已知,不等式恒成立,则的取值范围为_.14若全集,集合,则 。15满足关系式2,3A1,2,3,4的集合A的个数是16在ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=17集合A=x|1x3,B=x|x1,则AB=18当a0,a1时,函数f(x)=loga(x1)+1的图象恒过定点A,若点A在直线mxy+n=0上,则4m+2n的最小值是三、解答题19如图所示,已知+=1(a0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合()求椭圆C的方程;()求ABD面积的最大值;()设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数,使得k1+k2=0成立?若存在,求出的值;否则说明理由 20已知斜率为1的直线l经过抛物线y2=2px(p0)的焦点F,且与抛物线相交于A,B两点,|AB|=4(I)求p的值;(II)若经过点D(2,1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围21已知函数f(x)=lnxa(1),aR()求f(x)的单调区间;()若f(x)的最小值为0(i)求实数a的值;(ii)已知数列an满足:a1=1,an+1=f(an)+2,记x表示不大于x的最大整数,求证:n1时an=2 22已知函数,()求函数的最大值;()若,求函数的单调递增区间23某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图()求分数在50,60)的频率及全班人数;()求分数在80,90)之间的频数,并计算频率分布直方图中80,90)间矩形的高;()若要从分数在80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在90,100)之间的概率24记函数f(x)=log2(2x3)的定义域为集合M,函数g(x)=的定义域为集合N求:()集合M,N;()集合MN,R(MN) 滨江区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:函数y=ax(b+1)(a0,a1)的图象在第一、三、四象限,根据图象的性质可得:a1,a0b10,即a1,b0,故选:B2 【答案】D【解析】解:当2x4时,f(x)=1|x3|当1x2时,22x4,则f(x)=f(2x)=(1|2x3|),此时当x=时,函数取极大值;当2x4时,f(x)=1|x3|;此时当x=3时,函数取极大值1;当4x8时,24,则f(x)=cf()=c(1|3|),此时当x=6时,函数取极大值c函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,=,解得c=1或2故选D【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键3 【答案】C【解析】解:函数y=f(x)对任意实数x都有f(1+x)=f(1x),且函数f(x)在1,+)上为单调函数函数f(x)关于直线x=1对称,数列an是公差不为0的等差数列,且f(a6)=f(a23),a6+a23=2则an的前28项之和S28=14(a6+a23)=28故选:C【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题4 【答案】A【解析】解:复数z=由条件复数z=(其中aR,i是虚数单位)的实部与虚部相等,得,18a=3a+6,解得a=3故选:A【点评】本题考查复数的代数形式的混合运算,考查计算能力5 【答案】A【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键.6 【答案】B【解析】解:函数y=lnx在(0,+)上为增函数,故函数y=lnx在(0,+)上为减函数,当1xe2时,若x=1,函数取最大值0,x=e2,函数取最小值2,故函数y=lnx(1xe2) 的值域是2,0,故选:B【点评】本题考查的知识点是对数函数的值域与最值,熟练掌握对数函数的图象和性质,是解答的关键7 【答案】C【解析】解:S160,S170,=8(a8+a9)0,=17a90,a80,a90,公差d0Sn中最小的是S8故选:C【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题8 【答案】B【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,解得,由题意得,解得或,因为是递增的等差数列,所以,故选B考点:等差数列的性质9 【答案】C【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C考点:数列的通项公式10【答案】D【解析】解:Sn为等比数列an的前n项和,=4,S4,S8S4,S12S8也成等比数列,且S8=4S4,(S8S4)2=S4(S12S8),即9S42=S4(S124S4),解得=13故选:D【点评】熟练掌握等比数列的性质是解题的关键是基础的计算题11【答案】B【解析】解:绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故错;线性回归直线一定经过样本中心点(,),故正确;设随机变量服从正态分布N(1,32)则p(1)=,正确;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故不正确故选:B【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题12【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题二、填空题13【答案】【解析】试题分析:把原不等式看成是关于的一次不等式,在时恒成立,只要满足在时直线在轴上方即可,设关于的函数对任意的,当时,即,解得;当时,即,解得,的取值范围是;故答案为:考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题把原不等式看成是关于的一次不等式,在时恒成立,只要满足在时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.14【答案】|01【解析】,|01。15【答案】4 【解析】解:由题意知,满足关系式2,3A1,2,3,4的集合A有:2,3,2,3,1,2,3,4,2,3,1,4,故共有4个,故答案为:416【答案】 【解析】解:在ABC中,6a=4b=3cb=,c=2a,由余弦定理可得cosB=故答案为:【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题17【答案】x|1x1 【解析】解:A=x|1x3,B=x|x1,AB=x|1x1,故答案为:x|1x1【点评】本题主要考查集合的基本运算,比较基础18【答案】2 【解析】解:整理函数解析式得f(x)1=loga(x1),故可知函数f(x)的图象恒过(2,1)即A(2,1),故2m+n=14m+2n2=2=2当且仅当4m=2n,即2m=n,即n=,m=时取等号4m+2n的最小值为2故答案为:2三、解答题19【答案】 【解析】解:(),a=c,b2=c2椭圆方程为+=1又点A(1,)在椭圆上,=1,c2=2a=2,b=,椭圆方程为=1 ()设直线BD方程为y=x+b,D(x1,y1),B(x2,y2),与椭圆方程联立,可得4x2+2bx+b24=0=8b2+640,2b2x1+x2=b,x1x2=|BD|=,设d为点A到直线y=x+b的距离,d=ABD面积S=当且仅当b=2时,ABD的面积最大,最大值为 ()当直线BD过椭圆左顶点(,0)时,k1=2,k2=2此时k1+k2=0,猜想=1时成立证明如下:k1+k2=+=2+m=22=0当=1,k1+k2=0,故当且仅当=1时满足条件【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力20【答案】 【解析】解:(I)由题意可知,抛物线y2=2px(p0)的焦点坐标为,准线方程为所以,直线l的方程为由消y并整理,得设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1(II)由(I)可知,抛物线的方程为y2=2x由题意,直线m的方程为y=kx+(2k1)由方程组(1)可得ky22y+4k2=0(2)当k=0时,由方程(2),得y=1把y=1代入y2=2x,得这时直线m与抛物线只有一个公共点当k0时,方程(2)得判别式为=44k(4k2)由0,即44k(4k2)0,亦即4k22k10解得于是,当且k0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,因此,所求m的取值范围是【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题21【答案】 【解析】解:()函数f(x)的定义域为(0,+),且f(x)=当a0时,f(x)0,所以f(x)在区间(0,+)内单调递增;当a0时,由f(x)0,解得xa;由f(x)0,解得0xa所以f(x)的单调递增区间为(a,+),单调递减区间为(0,a)综上述:a0时,f(x)的单调递增区间是(0,+);a0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+)()()由()知,当a0时,f(x)无最小值,不合题意;当a0时,f(x)min=f(a)=1a+lna=0,令g(x)=1x+lnx(x0),则g(x)=1+=,由g(x)0,解得0x1;由g(x)0,解得x1所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+)故g(x)max=g(1)=0,即当且仅当x=1时,g(x)=0因此,a=1()因为f(x)=lnx1+,所以an+1=f(an)+2=1+lnan由a1=1得a2=2于是a3=+ln2因为ln21,所以2a3猜想当n3,nN时,2an下面用数学归纳法进行证明当n=3时,a3=+ln2,故2a3成立假设当n=k(k3,kN)时,不等式2ak成立则当n=k+1时,ak+1=1+lnak,由()知函数h(x)=f(x)+2=1+lnx在区间(2,)单调递增,所以h(2)h(ak)h(),又因为h(2)=1+ln22,h()=1+ln1+1故2ak+1成立,即当n=k+1时,不等式成立根据可知,当n3,nN时,不等式2an成立综上可得,n1时an=2【点评】本题主要考查函数的导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论