




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
珠晖区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数y=+的定义域是( )Ax|x1Bx|x1且x3Cx|x1且x3Dx|x1且x32 已知函数,且,则( )A B C D【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力3 若函数的定义域是,则函数的定义域是( )A B C D4 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A5BCD5 已知i为虚数单位,则复数所对应的点在( )A第一象限B第二象限C第三象限D第四象限6 (+)2n(nN*)展开式中只有第6项系数最大,则其常数项为( )A120B210C252D457 幂函数y=f(x)的图象经过点(2,),则满足f(x)=27的x的值是( )ABC3D38 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆9 二进制数化为十进制数的结果为( )A B C D 10下列函数中,既是奇函数又是减函数的为( )Ay=x+1By=x2CDy=x|x|11已知函数f(x)=,则的值为( )ABC2D312曲线y=x33x2+1在点(1,1)处的切线方程为( )Ay=3x4By=3x+2Cy=4x+3Dy=4x5二、填空题13向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为14设集合A=x|x+m0,B=x|2x4,全集U=R,且(UA)B=,求实数m的取值范围为15如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是16已知圆O:x2+y2=1和双曲线C:=1(a0,b0)若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,则=17等比数列an的公比q=,a6=1,则S6=18设直线系M:xcos+(y2)sin=1(02),对于下列四个命题:AM中所有直线均经过一个定点B存在定点P不在M中的任一条直线上C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上DM中的直线所能围成的正三角形面积都相等其中真命题的代号是(写出所有真命题的代号)三、解答题19如图,三棱柱ABCA1B1C1中,侧面AA1C1C底面ABC,AA1=A1C=AC=2,AB=BC,且ABBC,O为AC中点()证明:A1O平面ABC;()求直线A1C与平面A1AB所成角的正弦值;()在BC1上是否存在一点E,使得OE平面A1AB,若不存在,说明理由;若存在,确定点E的位置 20(本题12分)已知数列的首项,通项(,为常数),且成等差数列,求:(1)的值;(2)数列前项和的公式.21已知矩阵M所对应的线性变换把点A(x,y)变成点A(13,5),试求M的逆矩阵及点A的坐标 22(本小题满分12分)已知平面向量,.(1)若,求;(2)若与夹角为锐角,求的取值范围.23在平面直角坐标系xOy中,点B与点A(1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于()求动点P的轨迹方程;()设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得PAB与PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由24已知等差数列an的首项和公差都为2,且a1、a8分别为等比数列bn的第一、第四项(1)求数列an、bn的通项公式;(2)设cn=,求cn的前n项和Sn珠晖区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:由题意得:,解得:x1或x3,故选:D【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题2 【答案】D3 【答案】B 【解析】4 【答案】C【解析】解:双曲线焦点在y轴上,故两条渐近线为 y=x,又已知渐近线为, =,b=2a,故双曲线离心率e=,故选C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键5 【答案】A【解析】解: =1+i,其对应的点为(1,1),故选:A6 【答案】 B【解析】【专题】二项式定理【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项【解答】解:由已知(+)2n(nN*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项7 【答案】A【解析】解:设幂函数为y=x,因为图象过点(2,),所以有=(2),解得:=3所以幂函数解析式为y=x3,由f(x)=27,得:x3=27,所以x=故选A8 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.9 【答案】【解析】试题分析:,故选B.考点:进位制10【答案】D【解析】解:y=x+1不是奇函数;y=x2不是奇函数;是奇函数,但不是减函数;y=x|x|既是奇函数又是减函数,故选:D【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题11【答案】A【解析】解:函数f(x)=,f()=2,=f(2)=32=故选:A12【答案】B【解析】解:点(1,1)在曲线上,y=3x26x,y|x=1=3,即切线斜率为3利用点斜式,切线方程为y+1=3(x1),即y=3x+2故选B【点评】考查导数的几何意义,该题比较容易二、填空题13【答案】 【解析】解:不等式组的可行域为:由题意,A(1,1),区域的面积为=(x3)=,由,可得可行域的面积为:1=,坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积14【答案】m2 【解析】解:集合A=x|x+m0=x|xm,全集U=R,所以CUA=x|xm,又B=x|2x4,且(UA)B=,所以有m2,所以m2故答案为m215【答案】 【解析】解:由题意图形折叠为三棱锥,底面为EFC,高为AC,所以三棱柱的体积:112=,故答案为:【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力16【答案】1 【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(1,t),则B(1,t),C(1,t),D(1,t),由直线和圆相切的条件可得,t=1将A(1,1)代入双曲线方程,可得=1故答案为:1【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题17【答案】21 【解析】解:等比数列an的公比q=,a6=1,a1()5=1,解得a1=32,S6=21故答案为:2118【答案】BC【解析】【分析】验证发现,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,AM中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标C对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,DM中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出【解答】解:因为点(0,2)到直线系M:xcos+(y2)sin=1(02)中每条直线的距离d=1,直线系M:xcos+(y2)sin=1(02)表示圆x2+(y2)2=1的切线的集合,A由于直线系表示圆x2+(y2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n3),存在正n边形,其所有边均在M中的直线上,故C正确;D如下图,M中的直线所能围成的正三角形有两类,其一是如ABB型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确故答案为:BC三、解答题19【答案】 【解析】解:()证明:因为A1A=A1C,且O为AC的中点,所以A1OAC又由题意可知,平面AA1C1C平面ABC,交线为AC,且A1O平面AA1C1C,所以A1O平面ABC()如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系由题意可知,A1A=A1C=AC=2,又AB=BC,ABBC,所以得:则有:设平面AA1B的一个法向量为n=(x,y,z),则有,令y=1,得所以因为直线A1C与平面A1AB所成角和向量n与所成锐角互余,所以()设,即,得所以,得,令OE平面A1AB,得,即1+2=0,得,即存在这样的点E,E为BC1的中点【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力20【答案】(1);(2).考点:等差,等比数列通项公式,数列求和.21【答案】 【解析】解:依题意,由M=得|M|=1,故M1=从而由=得=故A(2,3)为所求【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础 22【答案】(1)2或;(2)【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量的夹角为锐角的充要条件是且不共线,由此可得范围试题解析:(1)由,得或,当时,当时,.(2)与夹角为锐角,又因为时,所以的取值范围是.考点:向量平行的坐标运算,向量的模与数量积【名师点睛】由向量的数量积可得向量的夹角公式,当为锐角时,但当时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是且不同向,同样两向量夹角为钝角的充要条件是且不反向23【答案】 【解析】解:()因为点B与A(1,1)关于原点O对称,所以点B得坐标为(1,1)设点P的坐标为(x,y)化简得x2+3y2=4(x1)故动点P轨迹方程为x2+3y2=4(x1)()解:若存在点P使得PAB与PMN的面积相等,设点P的坐标为(x0,y0)则因为sinAPB=sinMPN,所以所以=即(3x0)2=|x021|,解得因为x02+3y02=4,所以故存在点P使得PAB与PMN的面积相等,此时点P的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蚌埠医学院《影视视听语言》2023-2024学年第二学期期末试卷
- 2025至2031年中国红外高频气血循环机行业投资前景及策略咨询研究报告
- 幼儿园大班科学示范课《动物保护色》教案
- 蚌埠学院《现代食品微生物学》2023-2024学年第二学期期末试卷
- 2025至2031年中国珠兰盆景行业投资前景及策略咨询研究报告
- 重阳节主题班会 8
- DB13T 5154-2019 高速公路高性能混凝土应用技术规程
- DB13T 2857-2018 轧纵剪用热连轧低碳钢带通 用技术要求
- DB13T 5013-2019 金属声屏障通 用技术要求
- 中国足协e级教练员理论考试试题及答案
- 施工现场视频监控系统施工方案
- (正式版)JTT 1495-2024 公路水运危险性较大工程安全专项施工方案审查规程
- 《征兵入伍应征公民体格检查标准条文释义》
- MOOC 电子技术实习-北京科技大学 中国大学慕课答案
- 切花月季岩棉无土栽培技术
- 2023年教师招考中小学音乐学科专业知识考试真题及答案
- 中心静脉深静脉导管维护操作评分标准
- 2024年-2024五届华杯赛小高年级组试题及答案
- 伤医事件应急预案演练
- XXX手机马达射频干扰问题解决分析过程
- 医院网络信息安全培训
评论
0/150
提交评论