CASS工艺处理高氨氮污水的脱氮设计.doc_第1页
CASS工艺处理高氨氮污水的脱氮设计.doc_第2页
CASS工艺处理高氨氮污水的脱氮设计.doc_第3页
CASS工艺处理高氨氮污水的脱氮设计.doc_第4页
CASS工艺处理高氨氮污水的脱氮设计.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CASS工艺处理高氨氮污水的脱氮设计CASS工艺 高氨氮污水 脱氮 设计 CASS工艺发展至今,已在城市和工业废水处理领域逐步得到应用。但是,CASS工艺设计方法的研究却发展缓慢,目前还处于经验阶段,究其原因有两点:一是专业技术人员比较侧重于主要设备(如滗水器)和自控系统的研究开发,而忽略了对CASS工艺设计方法的研究;二是CASS工艺乃至所有的间歇式活性污泥工艺的反应过程都比较复杂,其部分生物作用机理至今仍在研究之中。高氨氮的处理,充分发挥CASS工艺脱氮除磷效果好、耐冲击负荷能力强、防止污泥膨胀、建设费用低和管理方便等优点,对于促进CASS工艺的发展和改善水体环境具有现实意义。1.1 活性污泥工艺设计 活性污泥工艺的设计计算方法有三种:污泥负荷法、泥龄法和数学模型法。三种方法各有其特点,分述如下:1、污泥负荷法污泥负荷法是目前国内外最流行的活性污泥设计方法,几十年来,污泥负荷法设计了成千上万座处理厂,充分说明其正确性和适用性。 污泥负荷法也有其弊端,主要表现为:一是污泥负荷法设计参数的选择主要依靠设计者的经验,这对于经验较少的设计者来讲相当困难;二是对脱氮要求未加考虑,影响了设计的精确性和可靠性。2、泥龄法泥龄法是经验和理论相结合的设计计算方法,比污泥负荷法更加精确可靠;泥龄法可以根据泥龄的选择,实现工艺的硝化和反硝化功能;同时,泥龄参数的选择范围比污泥负荷法窄,设计者选择起来难度较小。泥龄法的设计参数大多是根据国外水质加以修正,这是其目前应用的困难所在。3、数学模型法1986年,原国际水污染与控制协会IAWPRC提出了活性污泥1号数学模型,其后十几年里,随着数学模型的完善,越来越多的活性污泥系统开始采用它进行工程设计和优化。数学模型在理论上是比较完美的,但具体应用则存在不少问题,主要是由于处理的复杂性和多样性,模型中所包含的大量工艺参数需要根据具体的水质进行调整和确定,这需要大量的工程积累,即使简化了的数学模型,应用也相当困难。到目前为止,数学模型在国外尚未成为普遍采用的设计方法,而在我国还停留在研究阶段。 CASS工艺属于活性污泥法范畴,但由于其运行方式独特,与传统活性污泥法又有很大的差别。在同一周期内,池内的体积、污染物的浓度、DO和MLSS时刻都在发生变化,是一种非稳态的反应过程。目前CASS工艺设计采用污泥负荷法,该方法不考虑反应池内基质浓度、MLSS和DO含量在时间上的变化,只考虑进出水有机物的浓度差,并忽略同一反应周期内沉淀、滗水和闲置阶段的生物降解作用,采用与传统活性污泥法基本相同的计算公式。CASS工艺采用污泥负荷法进行设计时,除反应池容积计算与传统活性污泥法不同,其它如反应池DO和剩余污泥排放量等计算方法与传统活性污泥工艺相同,因此,本节着重介绍CASS工艺反应池容积的计算方法。1.2.1 计算BOD-污泥负荷(N)BOD-污泥负荷是CASS工艺的主要设计参数,其计算公式为: (1)式中: 取0.050.1kgBOD/(kgMLSSd),工业废水需参考相关资料或通过试验确定; 有机基质降解速率常数,L/(mgd); 有机质降解率,; #402;混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值,一般在生活中,#402;0.75。 (2)式中: 混合液挥发性悬浮固体浓度,mg/L; 混合液悬浮固体浓度,mg/L;1.2.2 CASS池容积计算CASS池容积采用BOD-污泥负荷进行计算,计算公式为: (3)式中:/d; 进水有机物浓度和混合液中残存的有机物浓度,mg/L;混合液污泥浓度(MLSS),mg/L; /(kgMLSSd); #402;混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值。1.2.3 容积校核 CASS池的有效容积由变动容积和固定容积组成。变动容积(V),指沉淀时活性污泥最高泥面至池底之间的容积。 CASS池总的有效容积: (4)式中:;CASS池个数。设池内最高液位为H(一般取35m),H由三个部分组成:(5)式中:池内设计最高水位和滗水器排放最低水位之间的高度,m; 滗水水位和泥面之间的安全距离,一般取1.52.0m;滗水结束时泥面的高度,m;其中: (6)式中: ; 一日内循环周期数;(7)式中:最高液位时混合液污泥浓度,mg/L; 污泥负荷法计算的结果,若不能满足,则必须减少BOD-污泥负荷,增大CASS池的有效容积,直到条件满足为止。1.2.4 设计方法分析从上述设计方法的描述中可以看出,现行的CASS工艺设计具有以下几个方面的特点:1、设计方法简单,设计参数单一,在传统的以污泥负荷为主要设计参数的活性污泥设计法基础上,采用容积进行校核,以保证滗水过程中的污泥不流失。2、设计只针对主反应区容积,而生物选择区容积则是按照主反应区容积的5设计。3、污泥负荷法设计重点针对有机物质的降解,对脱氮未加考虑,难以满足CASS工艺目前广泛应用的设计方法是污泥负荷法,污泥负荷法立足于有机物的去除,对系统脱氮效果则未加考虑,而对于高氨氮,脱氮效果的考虑更为重要,因此需结合目前已有的CASS工艺设计方法,加入脱氮工艺设计,对传统的CASS工艺设计方法进行改进。高氨氮的脱氮设计的改进思路如下:1、设计采用静态法。设计方法不追踪CASS反应池内基质和活性污泥浓度在时间上的变化过程,而是着重于在某一进水水质条件下经系统处理后能达到的最终处理效果。对于同步硝化反硝化,由于其机理还处在进一步研究阶段,在设计中不加考虑。对于沉淀和滗水阶段的生物反应,其作用并不明显,因此在设计中对这两个阶段的生物反应不加考虑。2、将主反应区和预反应区分开设计,主反应区主要功能为有机物降解和硝化,而预反应区的功能主要为生物选择和反硝化脱氮。3、主反应区采用泥龄法设计,而将污泥负荷作为导出参数,结合试验研究的结论,通过污泥负荷对设计结果进行校核。4、反应池的尺寸通过进水量和污泥沉降性能确定。主反应区设计采用泥龄法,并用污泥负荷进行校核,其设计步骤如下:1、计算硝化菌的最大比增长速率当pH和DO都适合于硝化反应进行时,计算亚硝酸菌的比增长速率公式为:(8)式中:;硝化温度,;2、计算稳定运行状态下的硝化菌比增长速率(9)式中:;-N浓度,mg/L;饱和常数,设计中一般取1.0mg/L。3、计算完成硝化反应所需的最小泥龄 (10) 式中:最小泥龄,d;。4、计算泥龄设计值本处采用Lawrence和McCarty在应用动力学理论进行生物处理过程设计时提出的安全系数(S可以定义为:(11)式中:设计泥龄,d;使生物硝化单元在pH值、溶解氧浓度不满足要求或者进水中含有对硝化有抑制作用的有毒有害物质时仍能保证达到设计所要求的处理效果。美国环保局建议一般取1.53.0。5、计算以VSS为基础的含碳有机物(COD)的去除速率活性异养菌生物固体浓度X可用下式计算: (12)式中:活性异养菌生物固体浓度,mg/L;异养菌产率系数,gVSS/gCOD或gVSS/gBOD; ; 进水有机物浓度,mgCOD/L或mgBOD/L; 出水有机物浓度,mgCOD/L或mgBOD/L; 设计泥龄,d; 水力停留时间,d;将含碳有机物的去除速率定义为: (13)则可以得到下式:(14) 曝气池混合液VSS由三部分组成:活性生物固体、微生物内源代谢分解残留物和吸附在活性污泥上面不能为微生物所分解的进水有机物,VSS浓度可以表示为: (15) 式中:VSS浓度,mg/L; 基质浓度变化,mgCOD/L或mgBOD/L;以VSS为基础的产率系数,gVSS/gCOD或gVSS/gBOD; ;以VSS为基础的(浓度为X)的有机物去除速率可以表示为:(16)6、计算生化反应器水力停留时间t(17)7、主反应区容积:(18)式中:;/d;8、有机负荷校核有机负荷F/M:(19)式中:#402;MLVSS/MLSS,一般取0.7。根据相关试验结论,若不在0.180.25 kgCOD/(kgMLSSd),则需改变泥龄,进行重新设计。10、氨氮负荷校核氨氮负荷SNR:(20)式中:N主反应区产生NO-N总量TKN,mg/L。根据相关试验结论,若SNR0.045 kg NH-N/(kgMLSSd),则需增大泥龄,进行重新设计。 预反应区的功能设计为反硝化,其设计步骤如下: 1、计算反硝化速率S反硝化速率可以根据试验结果或文献报道值确定,也可以按下面的方法计算:温度20时:S0.3F/M0.029(21)温度T时: S(为温度系数,一般取1.05) (22)2、缺氧池的MLVSS总量为:(23)式中:N-N,kgN/d。3、缺氧池的容积:/X#402; (24)4、缺氧池的水力停留时间:/Q (25)5、系统的总泥龄: (26)CASS反应器尺寸的确定主要是确定反应器的高度和面积,以满足泥水分离和滗水的需要。由于预反应区始终处于反应状态,不存在泥水分离的问题,且预反应区底部通过导流孔与主反应区相连,其水面高度与主反应区平齐,因此计算出主反应区的设计高度也同时计算出了预反应区的水面高度。所以反应区尺寸的确定主要是主反应区尺寸的确定。CASS池的泥水分离和SBR相同,生物处理和泥水分离结合在CASS池主反应区中进行,在曝气等生物处理过程结束后,系统即进入沉淀分离过程。在沉淀过程初期,曝气结束后的残余混合能量可用于生物絮凝过程,至池子趋于平静正式开始沉淀一般持续10min左右,沉淀过程从沉淀开始后一直延续至滗水阶段结束,沉淀时间为沉淀阶段和滗水阶段的时间总和。污泥泥面的位置则主要取决于污泥的沉降速度,污泥沉速主要与污泥浓度、SVI等因素有关,在CASS系统中,污泥的沉降速度可简单地用下式计算:) (27)式中:污泥沉速(m/h);),为安全计,采用主反应区中设计值 X,一般取30004200 mg/L;污泥沉降指数(mL /g)。为避免在滗水过程中将活性污泥带出系统,需要在滗水水位和污泥泥面之间保持一最小的安全距离H10/60)h,故可得下式:式中:最高水位和最低水位之间的高度差,也称滗水高度(m),H一般不超过池子总高的40%,与滗水装置的构造有关,一般其值最大在2.02.2m左右;沉淀时间;滗水时间。联立式(6.47)和(6.48)即可得:式中:););最高水位(m);式中沉淀时间t和面积A未定。根据边界条件用试算法即可求得式(29)中的池子高度和面积。高度H,用式(29)求得面积A,从而可求得滗水高度H,如滗水高度超过允许的范围,则重新设定池子高度,重复上述过程。在求得H: (30)最高水位时的MLSS浓度X已知,最低水位时的MLSS浓度则可相应求得:(31)最低水位时的设计MLSS浓度一般应不大于6.0kg/m。每日从系统中排出的VSS重量为L:) / (32)式中:L每日从系统中排出的VSS重量,kg/d。1、BOD的去除量:)/1000(33)2、氨氮的氧化量:QN/1000 (34)3、生物硝化系统,含碳有机物氧化需氧量与泥龄和水温有关系,每去除1kgBOD需氧1.01.3kg,一般取1.1,则碳氧化和硝化需氧量为:(35)4、每还原1kg NO-N需2.9kgBOD,由于利用水中的BOD作为碳源反硝化减氧需要量为:Q/1000(36) 实际需氧量:(37)1 张统. 间歇式活性污泥法处理技术及工程实例. 北京: 化学工业出版社,20022 张统. SBR及其变法处理与回用技术. 北京:化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论