蔚县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
蔚县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
蔚县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
蔚县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
蔚县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷蔚县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离2 已知两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,则实数a等于( )A1或3B1或3C1或3D1或33 已知集合,则( ) A B C D【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力4 已知抛物线x2=2y的一条弦AB的中点坐标为(1,5),则这条弦AB所在的直线方程是( )Ay=x4By=2x3Cy=x6Dy=3x25 设向量,满足:|=3,|=4, =0以,的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A3B4C5D66 阅读下面的程序框图,则输出的S=( )A14B20C30D557 设集合M=x|x1,N=x|xk,若MN,则k的取值范围是( )A(,1B1,+)C(1,+)D(,1)8 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内处应填( )A11?B12?C13?D14?9 在等差数列中,已知,则( )A12B24C36D4810正方体的内切球与外接球的半径之比为( )ABCD11已知全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,则集合0,1可以表示为( )AMNB(UM)NCM(UN)D(UM)(UN)12函数y=ecosx(x)的大致图象为( )ABCD二、填空题13x为实数,x表示不超过x的最大整数,则函数f(x)=xx的最小正周期是14设双曲线=1,F1,F2是其两个焦点,点M在双曲线上若F1MF2=90,则F1MF2的面积是15一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60,行驶4小时后,到达C处,看到这个灯塔B在北偏东15,这时船与灯塔相距为海里16如果实数满足等式,那么的最大值是 17已知定义在R上的奇函数满足,且时,则的值为 18阅读下图所示的程序框图,运行相应的程序,输出的的值等于_. 三、解答题19武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者现从符合条件的志愿者中随机抽取100名按年龄分组:第1组20,25),第2组25,30),第3组30,35),第4组35,40),第5组40,45,得到的频率分布直方图如图所示(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率20已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体()求几何体的表面积()判断在圆A上是否存在点M,使二面角MBCD的大小为45,且CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由21已知数列an的前n项和为Sn,且Sn=an,数列bn中,b1=1,点P(bn,bn+1)在直线xy+2=0上(1)求数列an,bn的通项an和bn;(2)设cn=anbn,求数列cn的前n项和Tn22(本小题满分12分)已知且过点的直线与线段有公共点, 求直线的斜率的取值范围.23在ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=()求;()若三角形ABC的面积为,求角C24若an的前n项和为Sn,点(n,Sn)均在函数y=的图象上(1)求数列an的通项公式;(2)设,Tn是数列bn的前n项和,求:使得对所有nN*都成立的最大正整数m蔚县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力2 【答案】A【解析】解:两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,所以=,解得 a=3,或a=1故选:A3 【答案】D【解析】由已知得,故,故选D4 【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=2,x12=2y1,x22=2y2两式相减可得,(x1+x2)(x1x2)=2(y1y2)直线AB的斜率k=1,弦AB所在的直线方程是y+5=x+1,即y=x4故选A,5 【答案】B【解析】解:向量ab=0,此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现故选B【点评】本题主要考查了直线与圆的位置关系可采用数形结合结合的方法较为直观6 【答案】C【解析】解:S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=54退出循环,故答案为C【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题7 【答案】B【解析】解:M=x|x1,N=x|xk,若MN,则k1k的取值范围是1,+)故选:B【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题8 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误9 【答案】B【解析】,所以,故选B答案:B 10【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为: a,所以,正方体的内切球与外接球的半径之比为:故选C11【答案】B【解析】解:全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,UM=0,1,N(UM)=0,1,故选:B【点评】本题主要考查集合的子交并补运算,属于基础题12【答案】C【解析】解:函数f(x)=ecosx(x,)f(x)=ecos(x)=ecosx=f(x),函数是偶函数,排除B、D选项令t=cosx,则t=cosx当0x时递减,而y=et单调递增,由复合函数的单调性知函数y=ecosx在(0,)递减,所以C选项符合,故选:C【点评】本题考查函数的图象的判断,考查同学们对函数基础知识的把握程度以及数形结合的思维能力二、填空题13【答案】1,)(9,25 【解析】解:集合,得 (ax5)(x2a)0,当a=0时,显然不成立,当a0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9a25,当a0时,不符合条件,综上,故答案为1,)(9,25【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题14【答案】9 【解析】解:双曲线=1的a=2,b=3,可得c2=a2+b2=13,又|MF1|MF2|=2a=4,|F1F2|=2c=2,F1MF2=90,在F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|MF2|)2+2|MF1|MF2|,即4c2=4a2+2|MF1|MF2|,可得|MF1|MF2|=2b2=18,即有F1MF2的面积S=|MF1|MF2|sinF1MF2=181=9故答案为:9【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题15【答案】24 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=24海里,则这时船与灯塔的距离为24海里故答案为:2416【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.17【答案】【解析】1111试题分析:,所以考点:利用函数性质求值18【答案】 【解析】解析:本题考查程序框图中的循环结构第1次运行后,;第2次运行后,;第3次运行后,;第4次运行后,;第5次运行后,此时跳出循环,输出结果程序结束三、解答题19【答案】 【解析】解:(1)由题意可知第3组的频率为0.065=0.3,第4组的频率为0.045=0.2,第5组的频率为0.025=0.1;(2)第3组的人数为0.3100=30,第4组的人数为0.2100=20,第5组的人数为0.1100=10;因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6);共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,所以第4组至少有一名志愿者被抽中的概率为【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力20【答案】 【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=422=8,或S=42+(422)+2=8;(2)作MEAC,EFBC,连结FM,易证FMBC,MFE为二面角MBCD的平面角,设CAM=,EM=2sin,EF=,tanMFE=1,tan=,CM=2【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目21【答案】 【解析】解:(1)Sn=an,当n2时,an=SnSn1=an,即an=3an1,a1=S1=,a1=3数列an是等比数列,an=3n 点P(bn,bn+1)在直线xy+2=0上,bn+1bn=2,即数列bn是等差数列,又b1=1,bn=2n1(2)cn=anbn=(2n1)3n,Tn=13+332+533+(2n3)3n1+(2n1)3n,3Tn=132+333+534+(2n3)3n+(2n1)3n+1,两式相减得:2Tn=3+2(32+33+34+3n)(2n1)3n+1,=62(n1)3n+1,Tn=3+(n1)3n+122【答案】或.【解析】试题分析:根据两点的斜率公式,求得,结合图形,即可求解直线的斜率的取值范围.试题解析:由已知,所以,由图可知,过点的直线与线段有公共点, 所以直线的斜率的取值范围是:或.考点:直线的斜率公式.23【答案】 【解析】解:()由题意知,tanA=,则=,即有sinAsinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;()因为三角形ABC的面积为,a=b、c=,所以S=absinC=a2sinC=,则,由余弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论