




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018版高考数学大一轮复习 第九章 平面解析几何 第7讲 抛物线试题 理 新人教版基础巩固题组(建议用时:40分钟)一、选择题1.(2016全国卷)设F为抛物线C:y24x的焦点,曲线y(k0)与C交于点P,PFx轴,则k()A. B.1 C. D.2解析由题可知抛物线的焦点坐标为(1,0),由PFx轴知,|PF|2,所以P点的坐标为(1,2).代入曲线y(k0)得k2,故选D.答案D2.点M(5,3)到抛物线yax2(a0)的准线的距离为6,那么抛物线的方程是()A.y12x2 B.y12x2或y36x2C.y36x2 D.yx2或yx2解析分两类a0,a0)的焦点为F,其准线与双曲线y2x21相交于A,B两点,若ABF为等边三角形,则p_.解析y22px的准线为x.由于ABF为等边三角形.因此不妨设A,B,又点A,B在双曲线y2x21上,从而1,所以p2.答案2三、解答题9.(2016江苏卷)如图,在平面直角坐标系xOy中,已知直线l:xy20,抛物线C:y22px(p0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.求证:线段PQ的中点坐标为(2p,p);求p的取值范围.(1)解l:xy20,l与x轴的交点坐标为(2,0).即抛物线的焦点为(2,0),2,p4.抛物线C的方程为y28x.(2)证明设点P(x1,y1),Q(x2,y2).则则kPQ,又P,Q关于l对称.kPQ1,即y1y22p,p,又PQ的中点一定在l上,22p.线段PQ的中点坐标为(2p,p).解PQ的中点为(2p,p),即即关于y的方程y22py4p24p0,有两个不等实根.0.即(2p)24(4p24p)0,解得0p,故所求p的范围为.10.已知抛物线y22px(p0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:(1)y1y2p2,x1x2;(2)为定值;(3)以AB为直径的圆与抛物线的准线相切.证明(1)由已知得抛物线焦点坐标为(,0).由题意可设直线方程为xmy,代入y22px,得y22p(my),即y22pmyp20.(*)则y1,y2是方程(*)的两个实数根,所以y1y2p2.因为y2px1,y2px2,所以yy4p2x1x2,所以x1x2.(2).因为x1x2,x1x2|AB|p,代入上式,得(定值).(3)设AB的中点为M(x0,y0),分别过A,B作准线的垂线,垂足为C,D,过M作准线的垂线,垂足为N,则|MN|(|AC|BD|)(|AF|BF|)|AB|.所以以AB为直径的圆与抛物线的准线相切.能力提升题组(建议用时:20分钟)11.(2017合肥模拟)已知抛物线y22px(p0)的焦点弦AB的两端点坐标分别为A(x1,y1),B(x2,y2),则的值一定等于()A.4 B.4 C.p2 D.p2解析若焦点弦ABx轴,则x1x2,则x1x2;若焦点弦AB不垂直于x轴,可设AB:yk(x),联立y22px得k2x2(k2p2p)x0,则x1x2.又y2px1,y2px2,yy4p2x1x2p4,又y1y20,y1y2p2.故4.答案A12.(2016四川卷)设O为坐标原点,P是以F为焦点的抛物线y22px(p0)上任意一点,M是线段PF上的点,且|PM|2|MF|,则直线OM的斜率的最大值为()A. B. C. D.1解析如图,由题可知F,设P点坐标为(y00),则(),kOM,当且仅当y2p2等号成立.故选C.答案C13.(2016湖北七校联考)已知抛物线方程为y24x,直线l的方程为2xy40,在抛物线上有一动点A,点A到y轴的距离为m,到直线l的距离为n,则mn的最小值为_.解析如图,过A作AHl,AN垂直于抛物线的准线,则|AH|AN|mn1,连接AF,则|AF|AH|mn1,由平面几何知识,知当A,F,H三点共线时,|AF|AH|mn1取得最小值,最小值为F到直线l的距离,即,即mn的最小值为1.答案114.(2017南昌模拟)已知抛物线C1:y24x和C2:x22py(p0)的焦点分别为F1,F2,点P(1,1),且F1F2OP(O为坐标原点).(1)求抛物线C2的方程;(2)过点O的直线交C1的下半部分于点M,交C2的左半部分于点N,求PMN面积的最小值.解(1)由题意知F1(1,0),F2,F1F2OP,(1,1)10,p2,抛物线C2的方程为x24y.(2)设过点O的直线为ykx(k0),联立得M,联立得N(4k,4k2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鸵鸟认养协议书范本
- 心理健康课课件制作
- 心理健康课件设计
- 窗外风景儿童画课件
- 心理健康课件插图图片
- 二零二五年度冷链运输货物破损赔偿协议
- 二零二五年度仓储物流中心混凝土地坪铺设与维护合同
- 二零二五年度厂房搬迁及搬迁后安全培训合同
- 二零二五年度家庭装修智能家居健康监测系统承揽合同
- 二零二五年度校园环境美化与改造合同
- 重庆市璧山区中小学教师招聘笔试试题2023年
- 475手操器与3051调试件
- 码头叉车司机安全操作规程
- 京沪高铁某段现浇箱梁施工方案
- 企业用工风险劳动合同风险防控培训课件
- GB/T 10066.4-2004电热设备的试验方法第4部分:间接电阻炉
- 加工中心个人简历
- 水利工程建设项目招标投标管理规定课件
- ta600空地勤培训动力系统
- 2023年版-肿瘤内科临床路径
- 产钳助产术考核标准
评论
0/150
提交评论