富裕县一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
富裕县一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
富裕县一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
富裕县一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
富裕县一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

富裕县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图可能是下列哪个函数的图象( )Ay=2xx21By=Cy=(x22x)exDy=2 直线2x+y+7=0的倾斜角为()A锐角B直角C钝角D不存在3 下面各组函数中为相同函数的是( )Af(x)=,g(x)=x1Bf(x)=,g(x)=Cf(x)=ln ex与g(x)=elnxDf(x)=(x1)0与g(x)=4 已知命题p:xR,cosxa,下列a的取值能使“p”是真命题的是( )A1B0C1D25 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的可以是( )Ai4?Bi5?Ci6?Di7?6 等比数列an中,a3,a9是方程3x211x+9=0的两个根,则a6=( )A3BCD以上皆非7 若复数满足(为虚数单位),则复数的虚部为( )A1 B C D8 一个骰子由六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( )A6 B3 C1 D29 函数的定义域是( )A0,+) B1,+) C(0,+) D(1,+)10若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是( )ABCD11记,那么ABCD12在ABC中,b=,c=3,B=30,则a=( )AB2C或2D2二、填空题13已知,与的夹角为,则 14若直线ykx1=0(kR)与椭圆恒有公共点,则m的取值范围是15已知等差数列an中,a3=,则cos(a1+a2+a6)=16若正数m、n满足mnmn=3,则点(m,0)到直线xy+n=0的距离最小值是17已知函数,则的值是_,的最小正周期是_.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力18二项式展开式中,仅有第五项的二项式系数最大,则其常数项为三、解答题19已知数列an满足a1=3,an+1=an+p3n(nN*,p为常数),a1,a2+6,a3成等差数列(1)求p的值及数列an的通项公式;(2)设数列bn满足bn=,证明bn20如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m点P从最低点A处按逆时针方向转动到最高点B处,记AOP=,(0,)(1)当= 时,求点P距地面的高度PQ;(2)试确定 的值,使得MPN取得最大值21在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y1)2=4和圆C2:(x4)2+(y5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标22本小题满分12分已知椭圆的离心率为,长轴端点与短轴端点间的距离为2求椭圆的长轴长;过椭圆中心O的直线与椭圆交于A、B两点A、B不是椭圆的顶点,点M在长轴所在直线上,且,直线BM与椭圆交于点D,求证:ADAB。23(本题满分14分)已知函数.(1)若在上是单调递减函数,求实数的取值范围;(2)记,并设是函数的两个极值点,若,求的最小值.24【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形,其设计创意如下:在长、宽的长方形中,将四边形沿直线翻折到(点是线段上异于的一点、点是线段上的一点),使得点落在线段上.(1)当点与点重合时,求面积;(2)经观察测量,发现当最小时,LOGO最美观,试求此时LOGO图案的面积.富裕县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 C【解析】解:A中,y=2xx21,当x趋向于时,函数y=2x的值趋向于0,y=x2+1的值趋向+,函数y=2xx21的值小于0,A中的函数不满足条件;B中,y=sinx是周期函数,函数y=的图象是以x轴为中心的波浪线,B中的函数不满足条件;C中,函数y=x22x=(x1)21,当x0或x2时,y0,当0x2时,y0;且y=ex0恒成立,y=(x22x)ex的图象在x趋向于时,y0,0x2时,y0,在x趋向于+时,y趋向于+;C中的函数满足条件;D中,y=的定义域是(0,1)(1,+),且在x(0,1)时,lnx0,y=0,D中函数不满足条件故选:C【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目2 【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为,则tan=2,即可判断出结论【解答】解:设直线2x+y+7=0的倾斜角为,则tan=2,则为钝角故选:C3 【答案】D【解析】解:对于A:f(x)=|x1|,g(x)=x1,表达式不同,不是相同函数;对于B:f(x)的定义域是:x|x1或x1,g(x)的定义域是xx1,定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是x|x0,定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是x|x1,是相同函数;故选:D【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题4 【答案】D【解析】解:命题p:xR,cosxa,则a1下列a的取值能使“p”是真命题的是a=2故选;D5 【答案】 C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的可以是i6?故选:C【点评】本小题主要考查循环结构、数列等基础知识根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查6 【答案】C【解析】解:a3,a9是方程3x211x+9=0的两个根,a3a9=3,又数列an是等比数列,则a62=a3a9=3,即a6=故选C7 【答案】A【解析】试题分析:,因为复数满足,所以,所以复数的虚部为,故选A. 考点:1、复数的基本概念;2、复数代数形式的乘除运算.8 【答案】A【解析】试题分析:根据与相邻的数是,而与相邻的数有,所以是相邻的数,故“?”表示的数是,故选A考点:几何体的结构特征9 【答案】A【解析】解:由题意得:2x10,即2x1=20,因为21,所以指数函数y=2x为增函数,则x0所以函数的定义域为0,+)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域10【答案】 A【解析】解:椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,圆的半径,由,得2cb,再平方,4c2b2,在椭圆中,a2=b2+c25c2,;由,得b+2c2a,再平方,b2+4c2+4bc4a2,3c2+4bc3a2,4bc3b2,4c3b,16c29b2,16c29a29c2,9a225c2,综上所述,故选A11【答案】B【解析】【解析1】,所以【解析2】,12【答案】C【解析】解:b=,c=3,B=30,由余弦定理b2=a2+c22accosB,可得:3=9+a23,整理可得:a23a+6=0,解得:a=或2故选:C二、填空题13【答案】【解析】解析:本题考查向量夹角与向量数量积的应用与的夹角为,14【答案】1,5)(5,+) 【解析】解:整理直线方程得y1=kx,直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y1即是y21得到m1椭圆方程中,m5m的范围是1,5)(5,+)故答案为1,5)(5,+)【点评】本题主要考查了直线与圆锥曲线的综合问题本题采用了数形结合的方法,解决问题较为直观15【答案】 【解析】解:数列an为等差数列,且a3=,a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3=,cos(a1+a2+a6)=cos=故答案是:16【答案】 【解析】解:点(m,0)到直线xy+n=0的距离为d=,mnmn=3,(m1)(n1)=4,(m10,n10),(m1)+(n1)2,m+n6,则d=3故答案为:【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题17【答案】,.【解析】,又,的定义域为,将的图象如下图画出,从而可知其最小正周期为,故填:,.18【答案】70 【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为Tr+1=(1)rC8rx82r令82r=0得r=4则其常数项为C84=70故答案为70【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别三、解答题19【答案】 【解析】(1)解:数列an满足a1=3,an+1=an+p3n(nN*,p为常数),a2=3+3p,a3=3+12p,a1,a2+6,a3成等差数列2a2+12=a1+a3,即18+6p=6+12p 解得p=2an+1=an+p3n,a2a1=23,a3a2=232,anan1=23n1,将这些式子全加起来 得ana1=3n3,an=3n(2)证明:bn满足bn=,bn=设f(x)=,则f(x)=,xN*,令f(x)=0,得x=(1,2)当x(0,)时,f(x)0;当x(,+)时,f(x)0,且f(1)=,f(2)=,f(x)max=f(2)=,xN*bn【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用20【答案】 【解析】解:(1)由题意得PQ=5050cos,从而当时,PQ=5050cos=75即点P距地面的高度为75米(2)由题意得,AQ=50sin,从而MQ=6050sin,NQ=30050sin又PQ=5050cos,所以tan,tan从而tanMPN=tan(NPQMPQ)=令g()=(0,)则,(0,)由g()=0,得sin+cos1=0,解得当时,g()0,g()为增函数;当x时,g()0,g()为减函数所以当=时,g()有极大值,也是最大值因为所以从而当g()=tanMNP取得最大值时,MPN取得最大值即当时,MPN取得最大值【点评】本题考查了与三角函数有关的最值问题,主要还是利用导数研究函数的单调性,进一步求其极值、最值21【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程【解答】解:(1)由于直线x=4与圆C1不相交;直线l的斜率存在,设l方程为:y=k(x4)(1分)圆C1的圆心到直线l的距离为d,l被C1截得的弦长为2d=1(2分)d=从而k(24k+7)=0即k=0或k=直线l的方程为:y=0或7x+24y28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为yb=k(xa),k0则直线l2方程为:yb=(xa)(6分)C1和C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+akb|=|5k+4abk|1+3k+akb=(5k+4abk)即(a+b2)k=ba+3或(ab+8)k=a+b5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,)或点P2(,)(12分)22【答案】【解析】由已知,又,解得,所以椭圆的长轴长以O为坐标原点长轴所在直线为x轴建立如图平面直角坐标系,不妨设椭圆的焦点在x轴上,则由1可知椭圆的方程为;设A,D,则A M根据题意,BM满足题意的直线斜率存在,设,联立,消去y得, ADAB23【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2), 24【答案】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论