涿鹿县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
涿鹿县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
涿鹿县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
涿鹿县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
涿鹿县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

涿鹿县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数f(x)的定义域为a,b,函数y=f(x)的图象如下图所示,则函数f(|x|)的图象是( )ABCD2 已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为( )A相离B相切C相交D不能确定3 已知f(x)=,则“ff(a)=1“是“a=1”的( )A充分不必要条件B必要不充分条件C充分必要条件D即不充分也不必要条件4 已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D15 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A,乙比甲成绩稳定B,甲比乙成绩稳定C,甲比乙成绩稳定D,乙比甲成绩稳定6 函数(,)的部分图象如图所示,则 f (0)的值为( )A. B.C. D. 【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.7 现要完成下列3项抽样调查:从10盒酸奶中抽取3盒进行食品卫生检查科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本较为合理的抽样方法是( )A简单随机抽样,系统抽样,分层抽样B简单随机抽样,分层抽样,系统抽样C系统抽样,简单随机抽样,分层抽样D分层抽样,系统抽样,简单随机抽样8 下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤9 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是( )A8cm2B cm2C12 cm2D cm210点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )ABCD11定义在R上的奇函数f(x),满足,且在(0,+)上单调递减,则xf(x)0的解集为( )ABCD12圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的二、填空题131785与840的最大约数为14已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个15抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为16设函数f(x)=若ff(a),则a的取值范围是17在下列给出的命题中,所有正确命题的序号为 函数y=2x3+3x1的图象关于点(0,1)成中心对称;对x,yR若x+y0,则x1或y1;若实数x,y满足x2+y2=1,则的最大值为;若ABC为锐角三角形,则sinAcosB在ABC中,BC=5,G,O分别为ABC的重心和外心,且=5,则ABC的形状是直角三角形18定义在(,+)上的偶函数f(x)满足f(x+1)=f(x),且f(x)在1,0上是增函数,下面五个关于f(x)的命题中:f(x)是周期函数;f(x) 的图象关于x=1对称;f(x)在0,1上是增函数;f(x)在1,2上为减函数;f(2)=f(0)正确命题的个数是三、解答题19武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者现从符合条件的志愿者中随机抽取100名按年龄分组:第1组20,25),第2组25,30),第3组30,35),第4组35,40),第5组40,45,得到的频率分布直方图如图所示(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率20设函数f(x)=mx2mx1(1)若对一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m+5恒成立,求m的取值范围 21【海安县2018届高三上学期第一次学业质量测试】已知函数,其中,是自然对数的底数.(1)当时,求曲线在处的切线方程;(2)求函数的单调减区间;(3)若在恒成立,求的取值范围.22已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(,2)和(4,2)(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象写出函数y=g(x)的解析式23(本小题满分12分)已知数列的各项均为正数,.()求数列的通项公式;()求数列的前项和24(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点. (1)将曲线的参数方程化为普通方程;(2)求的最值.涿鹿县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:y=f(|x|)是偶函数,y=f(|x|)的图象是由y=f(x)把x0的图象保留,x0部分的图象关于y轴对称而得到的故选B【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题2 【答案】C【解析】解:由点P(x0,y0)在圆C:x2+y2=4外,可得x02+y02 4,求得圆心C(0,0)到直线l:x0x+y0y=4的距离d=2,故直线和圆C相交,故选:C【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题3 【答案】B【解析】解:当a=1,则f(a)=f(1)=0,则f(0)=0+1=1,则必要性成立,若x0,若f(x)=1,则2x+1=1,则x=0,若x0,若f(x)=1,则x21=1,则x=,即若ff(a)=1,则f(a)=0或,若a0,则由f(a)=0或1得a21=0或a21=,即a2=1或a2=+1,解得a=1或a=,若a0,则由f(a)=0或1得2a+1=0或2a+1=,即a=,此时充分性不成立,即“ff(a)=1“是“a=1”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可4 【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论5 【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)=86,则,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键6 【答案】D【解析】易知周期,.由(),得(),可得,所以,则,故选D.7 【答案】A【解析】解;观察所给的四组数据,个体没有差异且总数不多可用随机抽样法,简单随机抽样,将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A8 【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题9 【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=22+422=12cm2,故选:C【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键10【答案】A【解析】解:点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示由图可得面积S=+=+2故选:A【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想11【答案】B【解析】解:函数f(x)是奇函数,在(0,+)上单调递减,且f ()=0,f ()=0,且在区间(,0)上单调递减,当x0,当x0时,f(x)0,此时xf(x)0当x0,当0x时,f(x)0,此时xf(x)0综上xf(x)0的解集为故选B12【答案】A【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来的倍,底面半径缩短到原来的,则体积为,所以,故选A.考点:圆锥的体积公式.1二、填空题13【答案】105 【解析】解:1785=8402+105,840=1058+0840与1785的最大公约数是105故答案为10514【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题15【答案】4 【解析】解:由已知可得直线AF的方程为y=(x1),联立直线与抛物线方程消元得:3x210x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4故答案为:4【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题16【答案】或a=1 【解析】解:当时,由,解得:,所以;当,f(a)=2(1a),02(1a)1,若,则,分析可得a=1若,即,因为212(1a)=4a2,由,得:综上得:或a=1故答案为:或a=1【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题17【答案】 :【解析】解:对于函数y=2x33x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于点(0,1)的对称点为(x0,2y0)也满足函数的解析式,则正确;对于对x,yR,若x+y0,对应的是直线y=x以外的点,则x1,或y1,正确;对于若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(2,0)连线的斜率,其最大值为,正确;对于若ABC为锐角三角形,则A,B,AB都是锐角,即AB,即A+B,BA,则cosBcos(A),即cosBsinA,故不正确对于在ABC中,G,O分别为ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则ODBC,GD=AD,=|,由则,即则又BC=5则有由余弦定理可得cosC0,即有C为钝角则三角形ABC为钝角三角形;不正确故答案为:18【答案】3个 【解析】解:定义在(,+)上的偶函数f(x),f(x)=f(x);f(x+1)=f(x),f(x+1)=f(x),f(x+2)=f(x+1)=f(x),f(x+1)=f(x)即f(x+2)=f(x),f(x+1)=f(x+1),周期为2,对称轴为x=1所以正确,故答案为:3个三、解答题19【答案】 【解析】解:(1)由题意可知第3组的频率为0.065=0.3,第4组的频率为0.045=0.2,第5组的频率为0.025=0.1;(2)第3组的人数为0.3100=30,第4组的人数为0.2100=20,第5组的人数为0.1100=10;因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6);共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,所以第4组至少有一名志愿者被抽中的概率为【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力20【答案】 【解析】解:(1)当m=0时,f(x)=10恒成立,当m0时,若f(x)0恒成立,则解得4m0综上所述m的取值范围为(4,0(2)要x1,3,f(x)m+5恒成立,即恒成立令当 m0时,g(x)是增函数,所以g(x)max=g(3)=7m60,解得所以当m=0时,60恒成立当m0时,g(x)是减函数所以g(x)max=g(1)=m60,解得m6所以m0综上所述,【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键21【答案】(1)(2)当时,无单调减区间;当时,的单调减区间是;当时,的单调减区间是.(3)【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。 (2) 因为,当时,所以无单调减区间.当即时,列表如下:所以的单调减区间是.当即时,列表如下:所以的单调减区间是.综上,当时,无单调减区间;当时,的单调减区间是;当时,的单调减区间是.(3).当时,由(2)可得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论