




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9Ax011y中考数学压轴题汇编(1)1、如图,抛物线经过的三个顶点,已知轴,点在轴上,点在轴上,且(1)求抛物线的对称轴;(2)写出三点的坐标并求抛物线的解析式;(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形若存在,求出所有符合条件的点坐标;不存在,请说明理由解:(1)抛物线的对称轴2分(2) 5分把点坐标代入中,解得6分7分(3)存在符合条件的点共有3个以下分三类情形探索设抛物线对称轴与轴交于,与交于过点作轴于,易得,以为腰且顶角为角的有1个: 8分在中,9分以为腰且顶角为角的有1个:在中,10分以为底,顶角为角的有1个,即画的垂直平分线交抛物线对称轴于,此时平分线必过等腰的顶点过点作垂直轴,垂足为,显然 于是13分14分 注:第(3)小题中,只写出点的坐标,无任何说明者不得分图122、如图12,已知直线与双曲线交于两点,且点的横坐标为(1)求的值;(2)若双曲线上一点的纵坐标为8,求的面积;(3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标解:(1)点A横坐标为4 , 当 = 4时, = 2 . 点A的坐标为( 4,2 ). 点A是直线 与双曲线 (k0)的交点 , k = 4 2 = 8 . (2) 解法一:如图12-1, 点C在双曲线上,当 = 8时, = 1 点C的坐标为 ( 1, 8 ) . 过点A、C分别做轴、轴的垂线,垂足为M、N,得矩形DMON .S矩形ONDM= 32 , SONC = 4 , SCDA = 9, SOAM = 4 . SAOC= S矩形ONDM - SONC - SCDA - SOAM = 32 - 4 - 9 - 4 = 15 . (3) 反比例函数图象是关于原点O的中心对称图形 , OP=OQ,OA=OB . 四边形APBQ是平行四边形 . SPOA = S平行四边形APBQ = 24 = 6 . 设点P的横坐标为( 0且),得P ( , ) .过点P、A分别做轴的垂线,垂足为E、F, 点P、A在双曲线上,SPOE = SAOF = 4 .若04,如图12-3, SPOE + S梯形PEFA = SPOA + SAOF, S梯形PEFA = SPOA = 6 . .解得= 2,= - 8(舍去) . P(2,4). 若 4,如图12-4, SAOF+ S梯形AFEP = SAOP + SPOE, S梯形PEFA = SPOA = 6 . ,解得 = 8, = - 2 (舍去) . P(8,1). 点P的坐标是P(2,4)或P(8,1). 5、如图,抛物线交轴于A、B两点,交轴于点C,点P是它的顶点,点A的横坐标是3,点B的横坐标是1(1)求、的值;(2)求直线PC的解析式;(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由(参考数:,)解: (1)由已知条件可知: 抛物线经过A(-3,0)、B(1,0)两点 解得 (2) , P(-1,-2),C 设直线PC的解析式是,则 解得 直线PC的解析式是 说明:只要求对,不写最后一步,不扣分 (3) 如图,过点A作AEPC,垂足为E设直线PC与轴交于点D,则点D的坐标为(3,0)在RtOCD中, OC=, 8分 OA=3,AD=6 9分 COD=AED=90o,CDO公用, CODAED , 即 , 以点A为圆心、直径为5的圆与直线PC相离 12分6、如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为的扇形(1)求这个扇形的面积(结果保留)(3分)(2)在剩下的三块余料中,能否从第块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由(4分)(3)当的半径为任意值时,(2)中的结论是否仍然成立?请说明理由(5分)解:(1)连接,由勾股定理求得:1分2分(2)连接并延长,与弧和交于, 1分 弧的长: 2分圆锥的底面直径为: 3分,不能在中剪出一个圆作为底面与此扇形围成圆锥 (3)由勾股定理求得: 弧的长: 圆锥的底面直径为: 且 即无论半径为何值,不能在余料中剪出一个圆作为底面与此扇形围成圆锥7、如图,对称轴为直线x的抛物线经过点A(6,0)和B(0,4)(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)当四边形OEAF的面积为24时,请判断OEAF是否为菱形?是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由9、(湖北荆门)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合)现将PAB沿PB翻折,得到PDB;再在OC边上选取适当的点E,将POE沿PE翻折,得到PFE,并使直线PD、PF重合(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q,使PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标图1图2解:(1)由已知PB平分APD,PE平分OPF,且PD、PF重合,则BPE=90OPEAPB=90又APBABP=90,OPE=PBARtPOERtBPA2分即y=(0x4)且当x=2时,y有最大值4分(2)由已知,PAB、POE均为等腰三角形,可得P(1,0),E(0,1),B(4,3)6分设过此三点的抛物线为y=ax2bxc,则y= (3)由(2)知EPB=90,即点Q与点B重合时满足条件9分直线PB为y=x1,与y轴交于点(0,1)将PB向上平移2个单位则过点E(0,1),该直线为y=x1由得Q(5,6)故该抛物线上存在两点Q(4,3)、(5,6)满足条件 1211,在梯形ABCD中,ADBC,AB=AD=DC=2cm,BC=4cm,在等腰PQR中,QPR=120,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰PQR重合部分的面积记为S平方厘米(1)当t=4时,求S的值(2)当,求S与t的函数关系式,并求出S的最大值图1125(1)t4时,Q与B重合,P与D重合,重合部分是(第25题图)AxyBCO25(本题满分10分)如图,在平面直角坐标系中,抛物线=+经过A(0,4)、B(,0)、 C(,0)三点,且-=5(1)求、的值;(4分)(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3分)(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由(3分)25. 解:(1)抛物线=+经过点A(0,4), =4 又由题意可知,、是方程+=0的两个根,+=, =6 由已知得(-)=25又(-)=(+)4=24 24=25 解得=当=时,抛物线与轴的交点在轴的正半轴上,不合题意,舍去= (2)四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分 又=4=(+)+ 6分 抛物线的顶点(,)即为所求的点D7分 (3)四边形BPOH是以OB为对角线的菱形,点B的坐标为(6,0),根据菱形的性质,点P必是直线=-3与抛物线=-4的交点, 8分 当=3时,=(3)(3)4=4, 在抛物线上存在一点P(3,4),使得四边形BPOH为菱形 9分 四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(3,3),但这一点不在抛物线上10分25.(本小题满分10分)已知点A(a,)、B(2a,y)、C(3a,y)都在抛物线上.(1)求抛物线与x轴的交点坐标;(2)当a=1时,求ABC的面积;(3)是否存在含有、y、y,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.解:(1)由5=0, 得,抛物线与x轴的交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青海省大通县2026届九上化学期中联考试题含解析
- 河北省石家庄市长安区2026届英语九上期末教学质量检测模拟试题含解析
- 广东省深圳市育才一中学2026届九年级英语第一学期期末联考模拟试题含解析
- 2025年养老护理员(三级)急救技能实际操作试题及答案
- 2026届资阳市重点中学九年级化学第一学期期中达标检测模拟试题含解析
- 2026届云南省大理市化学九上期中检测模拟试题含解析
- 2026届黑龙江省宝泉岭农垦管理局化学九年级第一学期期末检测模拟试题含解析
- 2026届黑龙江省宝泉岭农垦管理局九年级化学第一学期期中质量跟踪监视试题含解析
- 2026届安徽庐江县英语九上期末质量检测试题含解析
- 离婚协议补充协议:共同财产分割及子女教育费用承担
- 2025年司法局招聘司法所协理员历年考试试题与答案
- 《数据库系统概论》教案
- 小学学校“十五五”(2026-2030)发展规划
- 2025一建《建设工程项目管理》考前十页纸(完整版)
- 红楼梦第34回课件
- 摩托车整车采购合同范本
- 民事起诉状(人身保险合同纠纷)样式
- 9《犟龟》公开课一等奖创新教学设计
- 2025年乡村产业发展笔试模拟题库
- 2025滨海投资(天津)有限公司校园招聘考试备考题库及答案解析
- 2024-2025学年度江西建设职业技术学院单招《职业适应性测试》题库试题【名师系列】附答案详解
评论
0/150
提交评论