




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宝山区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设集合( )ABCD 2 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为( )A20,2 B24,4 C25,2 D25,43 若圆心坐标为的圆在直线上截得的弦长为,则这个圆的方程是( )A B C D4 函数f(x)=2x的零点个数为( )A0B1C2D35 已知在数轴上0和3之间任取一实数,则使“”的概率为( )A B C D6 设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为 A、B、C、 D、7 全称命题:xR,x20的否定是( )AxR,x20BxR,x20CxR,x20DxR,x208 在抛物线y2=2px(p0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )Ax=1Bx=Cx=1Dx=9 某三棱锥的三视图如图所示,该三棱锥的表面积是 A、 B、 C、 D、 10半径R的半圆卷成一个圆锥,则它的体积为( )AR3BR3CR3DR311若函数的定义域是,则函数的定义域是( )A B C D12若命题p:xR,2x210,则该命题的否定是( )AxR,2x210 BxR,2x210CxR,2x210DxR,2x210二、填空题13已知=1bi,其中a,b是实数,i是虚数单位,则|abi|=14已知集合,则的元素个数是 .15抛物线y2=8x上到顶点和准线距离相等的点的坐标为16在矩形ABCD中,=(1,3),则实数k=17函数y=lgx的定义域为18若直线:与直线:垂直,则 .三、解答题19设集合.(1)若,求实数的值;(2),求实数的取值范围.111120(本小题满分12分)已知函数,数列满足:,().(1)求数列的通项公式;(2)设数列的前项和为,求数列的前项和.【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.21【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.(1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.22本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,nN的函数解析式;商店记录了50天该商品的日需求量单位:件,整理得下表:日需求量n89101112频数91115105假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间内的概率.23(本小题满分12分)在多面体中,四边形与均为正方形,平面,平面,且(1)求证:平面平面;(2)求二面角的大小的余弦值 24已知,且(1)求sin,cos的值;(2)若,求sin的值宝山区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:集合A中的不等式,当x0时,解得:x;当x0时,解得:x,集合B中的解集为x,则AB=(,+)故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键2 【答案】C【解析】考点:茎叶图,频率分布直方图3 【答案】B【解析】考点:圆的方程.11114 【答案】C【解析】解:易知函数的定义域为x|x1,0,函数在(,1)和(1,+)上都是增函数,又0,f(0)=1(2)=30,故函数在区间(4,0)上有一零点;又f(2)=44=0,函数在(1,+)上有一零点0,综上可得函数有两个零点故选:C【点评】本题考查函数零点的判断解题关键是掌握函数零点的判断方法利用函数单调性确定在相应区间的零点的唯一性属于中档题5 【答案】C【解析】试题分析:由得,由几何概型可得所求概率为.故本题答案选C.考点:几何概型6 【答案】C.【解析】由,得:,即,令,则当时,即在是减函数, ,在是减函数,所以由得,即,故选7 【答案】D【解析】解:命题:xR,x20的否定是:xR,x20故选D【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“”的否定用“”了这里就有注意量词的否定形式如“都是”的否定是“不都是”,而不是“都不是”特称命题的否定是全称命题,“存在”对应“任意”8 【答案】C【解析】解:由题意可得抛物线y2=2px(p0)开口向右,焦点坐标(,0),准线方程x=,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()=5,解之可得p=2故抛物线的准线方程为x=1故选:C【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题9 【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,所求表面积为三棱锥四个面的面积之和。利用垂直关系和三角形面积公式,可得:,因此该几何体表面积,故选B10【答案】A【解析】解:2r=R,所以r=,则h=,所以V=故选A11【答案】B 【解析】12【答案】C【解析】解:命题p:xR,2x210,则其否命题为:xR,2x210,故选C;【点评】此题主要考查命题否定的定义,是一道基础题;二、填空题13【答案】 【解析】解:=1bi,a=(1+i)(1bi)=1+b+(1b)i,解得b=1,a=2|abi|=|2i|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题14【答案】【解析】试题分析:在平面直角坐标系中画出圆与抛物线的图形,可知它们有个交点考点:集合的基本运算.15【答案】( 1,2) 【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=2a2+2=,求得a=2点P的坐标为( 1,2)故答案为:( 1,2)【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题16【答案】4 【解析】解:如图所示,在矩形ABCD中,=(1,3),=(k1,2+3)=(k1,1),=1(k1)+(3)1=0,解得k=4故答案为:4【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目17【答案】x|x0 【解析】解:对数函数y=lgx的定义域为:x|x0故答案为:x|x0【点评】本题考查基本函数的定义域的求法18【答案】1【解析】试题分析:两直线垂直满足,解得,故填:1.考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,当两直线垂直时,需满足,当两直线平行时,需满足且,或是,当直线是斜截式直线方程时,两直线垂直,两直线平行时,.1三、解答题19【答案】(1)或;(2)【解析】(2) . 无实根, 解得; 中只含有一个元素,仅有一个实根, 故舍去; 中只含有两个元素,使 两个实根为和, 需要满足方程组无根,故舍去, 综上所述.1111.Com考点:集合的运算及其应用.20【答案】【解析】(1),. 即,所以数列是以首项为2,公差为2的等差数列, . (5分)(2)数列是等差数列,. (8分). (12分)21【答案】(1)单调递增区间为 ;单调递减区间为 (2) (3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,分和两种情况解不等式;当时,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析: (2)时,当时,原不等式可化为 记,则,当时,所以在单调递增,又,故不等式解为; 当时,原不等式可化为,显然不成立, 综上,原不等式的解集为 22【答案】【解析】:当日需求量时,利润为;当需求量时,利润.所以利润与日需求量的函数关系式为:50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元. 若利润在区间内的概率为23【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想平面,平面平面5分24【答案】 【解析】解:(1)将sin+cos=两边平方得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源行业技术专利报告:智能电网技术专利洞察
- 飞机可靠性安全性测试题及答案解析
- 2025年氢能源产业链关键技术与市场前景报告
- 新能源人才流动报告:2025年技术创新与竞争格局深度分析
- 2025年太阳能硅片硅碇行业关键原材料市场分析报告
- 2025年风电项目环境影响评价与生态风险评估技术报告
- 2025年医药行业CRO模式下的临床试验方案设计与优化报告
- 2025年氢能产业投融资风险识别与防范策略报告
- 音乐产业2025年版权运营市场潜力分析与音乐科技创新前景展望报告
- 2025年医药企业研发外包(CRO)在临床试验数据分析与解读中的方法与工具报告
- 2025建筑二次结构木工劳务合同范本
- GB/T 46105-2025陆地生态系统碳汇核算指南
- 第一讲-决胜十四五奋发向前行-2025秋形势与政策版本-第二讲-携手周边国家共创美好未来-2025秋形势与政策版本
- 学堂在线 现代生活美学-花香茶之道 章节测试答案
- 2025年川教版(2024)小学信息科技三年级(上册)教学设计及反思(附目录P118)
- TD/T 1065-2021 国土空间规划城市设计指南(正式版)
- 信息组织与信息构建课件
- 应急管理学院成立可行性方案
- 视频监控调取记录表
- 质量控制计划QCP
- 七田真1000图记忆
评论
0/150
提交评论