已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷鹿城区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 直线在平面外是指( )A直线与平面没有公共点B直线与平面相交C直线与平面平行D直线与平面最多只有一个公共点2 下列图象中,不能作为函数y=f(x)的图象的是( )ABCD3 若偶函数y=f(x),xR,满足f(x+2)=f(x),且x0,2时,f(x)=1x,则方程f(x)=log8|x|在10,10内的根的个数为( )A12B10C9D84 函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)5 “a0”是“方程y2=ax表示的曲线为抛物线”的( )条件A充分不必要B必要不充分C充要D既不充分也不必要6 在中,、分别为角、所对的边,若,则此三角形的形状一定是( )A等腰直角B等腰或直角C等腰D直角7 设函数f(x)=的最小值为1,则实数a的取值范围是( )Aa2Ba2CaDa8 设有直线m、n和平面、,下列四个命题中,正确的是( )A若m,n,则mnB若m,n,m,n,则C若,m,则mD若,m,m,则m9 若复数z满足=i,其中i为虚数单位,则z=( )A1iB1+iC1iD1+i10函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)11已知函数f(x)=x4cosx+mx2+x(mR),若导函数f(x)在区间2,2上有最大值10,则导函数f(x)在区间2,2上的最小值为( )A12B10C8D612某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111A B C D二、填空题13已知平面上两点M(5,0)和N(5,0),若直线上存在点P使|PM|PN|=6,则称该直线为“单曲型直线”,下列直线中:y=x+1 y=2 y=x y=2x+1是“单曲型直线”的是14已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是15记等比数列an的前n项积为n,若a4a5=2,则8=16已知关于的不等式的解集为,则关于的不等式的解集为_.17函数f(x)=loga(x1)+2(a0且a1)过定点A,则点A的坐标为18设集合A=3,0,1,B=t2t+1若AB=A,则t=三、解答题19设函数,若对于任意x1,2都有f(x)m成立,求实数m的取值范围20已知数列an满足a1=,an+1=an+(nN*)证明:对一切nN*,有();()0an121某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?22已知函数f(x)=ax2+bx+c,满足f(1)=,且3a2c2b(1)求证:a0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1x2|的取值范围 23若数列an的前n项和为Sn,点(an,Sn)在y=x的图象上(nN*),()求数列an的通项公式;()若c1=0,且对任意正整数n都有,求证:对任意正整数n2,总有24已知函数f(x)=|x5|+|x3|()求函数f(x)的最小值m;()若正实数a,b足+=,求证: +m 鹿城区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:根据直线在平面外是指:直线平行于平面或直线与平面相交,直线在平面外,则直线与平面最多只有一个公共点故选D2 【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x0时,有两个不同的y和x对应,所以不满足y值的唯一性所以B不能作为函数图象故选B【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性3 【答案】D【解析】解:函数y=f(x)为偶函数,且满足f(x+2)=f(x),f(x+4)=f(x+2+2)=f(x+2)=f(x),偶函数y=f(x)为周期为4的函数,由x0,2时,f(x)=1x,可作出函数f(x)在10,10的图象,同时作出函数f(x)=log8|x|在10,10的图象,交点个数即为所求数形结合可得交点个为8,故选:D4 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反5 【答案】A【解析】解:若方程y2=ax表示的曲线为抛物线,则a0“a0”是“方程y2=ax表示的曲线为抛物线”的充分不必要条件故选A【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础6 【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B 7 【答案】C【解析】解:当x时,f(x)=4x323=1,当x=时,取得最小值1;当x时,f(x)=x22x+a=(x1)2+a1,即有f(x)在(,)递减,则f(x)f()=a,由题意可得a1,解得a故选:C【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题8 【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D9 【答案】A【解析】解: =i,则=i(1i)=1+i,可得z=1i故选:A10【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C11【答案】C【解析】解:由已知得f(x)=4x3cosxx4sinx+2mx+1,令g(x)=4x3cosxx4sinx+2mx是奇函数,由f(x)的最大值为10知:g(x)的最大值为9,最小值为9,从而f(x)的最小值为9+1=8故选C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大12【答案】【解析】试题分析:分段间隔为,故选D.考点:系统抽样二、填空题13【答案】 【解析】解:|PM|PN|=6点P在以M、N为焦点的双曲线的右支上,即,(x0)对于,联立,消y得7x218x153=0,=(18)247(153)0,y=x+1是“单曲型直线”对于,联立,消y得x2=,y=2是“单曲型直线”对于,联立,整理得144=0,不成立不是“单曲型直线”对于,联立,消y得20x2+36x+153=0,=3624201530y=2x+1不是“单曲型直线”故符合题意的有故答案为:【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用14【答案】 【解析】解:已知为所求;故答案为:【点评】本题主要考查椭圆的标准方程属基础题15【答案】16 【解析】解:等比数列an的前n项积为n,8=a1a2a3a4a5a6a7a8=(a4a5)4=24=16故答案为:16【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键16【答案】【解析】考点:一元二次不等式的解法.17【答案】(2,2) 【解析】解:loga1=0,当x1=1,即x=2时,y=2,则函数y=loga(x1)+2的图象恒过定点 (2,2)故答案为:(2,2)【点评】本题考查对数函数的性质和特殊点,主要利用loga1=0,属于基础题18【答案】0或1 【解析】解:由AB=A知BA,t2t+1=3t2t+4=0,无解 或t2t+1=0,无解 或t2t+1=1,t2t=0,解得 t=0或t=1故答案为0或1【点评】本题考查集合运算及基本关系,掌握好概念是基础正确的转化和计算是关键三、解答题19【答案】 【解析】解:,f(x)=3x2x2=(3x+2)(x1),当x1,),(1,2时,f(x)0;当x(,1)时,f(x)0;f(x)在1,),(1,2上单调递增,在(,1)上单调递减;且f()=+2+5=5+,f(2)=8422+5=7;故fmax(x)=f(2)=7;故对于任意x1,2都有f(x)m成立可化为7m;故实数m的取值范围为(7,+)【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题20【答案】 【解析】证明:()数列an满足a1=,an+1=an+(nN*),an0,an+1=an+0(nN*),an+1an=0,对一切nN*,()由()知,对一切kN*,当n2时,=31+=31+=3(1+1)=,an1,又,对一切nN*,0an1【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用21【答案】【解析】(1)f(t)=10=102sin(t+),t0,24),t+,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为102=8,故实验室这一天的最大温差为128=4。(2)由题意可得,当f(t)11时,需要降温,由()可得f(t)=102sin(t+),由102sin(t+)11,求得sin(t+),即t+,解得10t18,即在10时到18时,需要降温。22【答案】【解析】解:(1)f(1)=a+b+c=,3a+2b+2c=0又3a2c2b,故3a0,2b0,从而a0,b0,又2c=3a2b及3a2c2b知3a3a2b2ba0,332,即3(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+ac=ac下面对c的正负情况进行讨论:当c0时,a0,f(0)=c0,f(1)=0所以函数f(x)在区间(0,1)内至少有一个零点;当c0时,a0,f(1)=0,f(2)=ac0所以函数f(x)在区间(1,2)内至少有一个零点;综合得函数f(x)在区间(0,2)内至少有一个零点;(3)x1,x2是函数f(x)的两个零点x1,x2是方程ax2+bx+c=0的两根故x1+x2=,x1x2=从而|x1x2|=3,|x1x2|【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化属于中档题23【答案】 【解析】(I)解:点(an,Sn)在y=x的图象上(nN*),当n2时,化为,当n=1时,解得a1=(2)证明:对任意正整数n都有=2n+1,cn=(cncn1)+(cn1cn2)+(c2c1)+c1=(2n1)+(2n3)+3=(n+1)(n1)当n2时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初中七年级化学期中练习卷
- 2025年碳交易市场机制研究可行性报告
- 2025年建筑行业智能建造技术创新研究报告及未来发展趋势
- 2025年企业碳足迹核查服务协议
- 2025年健康管理师之健康管理师三级通关提分题库及完整答案
- 2025年企业后勤餐饮服务外包
- 2025年三门峡市陕县保安员招聘考试题库附答案解析
- 2025年氢能与燃料电池研发项目可行性研究报告及总结分析
- 高压线路带电检修工技能试题(附答案)
- 2025年农业灌溉水泵技术服务条款
- 商业道德政策培训课件
- CJ/T 434-2013超声波水表
- 肝衰竭诊治进展
- 肌电图培训课件
- 计算国内航空货物运费国内航空货物运费的计算方法国内航空
- 2022浪潮英信服务器NP5570M5产品技术白皮书V2.0
- 【MOOC】知识图谱导论-浙江大学 中国大学慕课MOOC答案
- 学校降温情况报告范文
- 《生活污水处》课件
- 严重创伤患者紧急救治血液保障模式与输血策略中国专家共识(2024版)
- 戏剧鉴赏学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论