贵定县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
贵定县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
贵定县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
贵定县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
贵定县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵定县第一中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知在ABC中,a=,b=,B=60,那么角C等于( )A135B90C45D752 已知集合,则( ) A B C D【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力3 设偶函数f(x)在(0,+)上为减函数,且f(2)=0,则不等式0的解集为( )A(2,0)(2,+)B(,2)(0,2)C(,2)(2,+)D(2,0)(0,2)4 已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则实数的取值范围是( )A B C D【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.5 已知函数f(x)=是R上的增函数,则a的取值范围是( )A3a0B3a2Ca2Da06 已知双曲线C:=1(a0,b0)的左、右焦点分别为F1,F2,过点F1作直线lx轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )ABC2D7 已知变量满足约束条件,则的取值范围是( )A B C D8 二进制数化为十进制数的结果为( )A B C D 9 二项式的展开式中项的系数为10,则( )A5 B6 C8 D10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力10已知角的终边经过点P(4,m),且sin=,则m等于( )A3B3CD311设m是实数,若函数f(x)=|xm|x1|是定义在R上的奇函数,但不是偶函数,则下列关于函数f(x)的性质叙述正确的是( )A只有减区间没有增区间B是f(x)的增区间Cm=1D最小值为312已知f(x)为定义在(0,+)上的可导函数,且f(x)xf(x)恒成立,则不等式x2f()f(x)0的解集为( )A(0,1)B(1,2)C(1,+)D(2,+)二、填空题13直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为14已知函数的一条对称轴方程为,则函数的最大值为_【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想15若函数f(x)=x22x(x2,4),则f(x)的最小值是16设平面向量,满足且,则 ,的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.17已知,那么 .18某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .三、解答题19已知在等比数列an中,a1=1,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b1+2b2+3b3+nbn=an(nN*),求bn的通项公式bn20设a0,是R上的偶函数()求a的值;()证明:f(x)在(0,+)上是增函数21设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为2cos2+3=0,曲线C2的参数方程为(t是参数,m是常数)()求C1的直角坐标方程和C2的普通方程;()若C1与C2有两个不同的公共点,求m的取值范围 22某运动员射击一次所得环数X的分布如下:X0678910P00.20.30.30.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为(I)求该运动员两次都命中7环的概率;()求的数学期望E23(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程24已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(,2)和(4,2)(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象写出函数y=g(x)的解析式贵定县第一中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:由正弦定理知=,sinA=,ab,AB,A=45,C=180AB=75,故选:D2 【答案】D【解析】由已知得,故,故选D3 【答案】B【解析】解:f(x)是偶函数f(x)=f(x)不等式,即也就是xf(x)0当x0时,有f(x)0f(x)在(0,+)上为减函数,且f(2)=0f(x)0即f(x)f(2),得0x2;当x0时,有f(x)0x0,f(x)=f(x)f(2),x2x2综上所述,原不等式的解集为:(,2)(0,2)故选B4 【答案】C【解析】画出可行域如图所示,要使目标函数取得最大值时有唯一的最优解,则需直线过点时截距最大,即最大,此时即可.5 【答案】B【解析】解:函数是R上的增函数设g(x)=x2ax5(x1),h(x)=(x1)由分段函数的性质可知,函数g(x)=x2ax5在(,1单调递增,函数h(x)=在(1,+)单调递增,且g(1)h(1)解可得,3a2故选B6 【答案】D【解析】解:设F1(c,0),F2(c,0),则l的方程为x=c,双曲线的渐近线方程为y=x,所以A(c, c)B(c, c)AB为直径的圆恰过点F2F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a离心率为=故选D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式7 【答案】A【解析】试题分析:作出可行域,如图内部(含边界),表示点与原点连线的斜率,易得,所以故选A考点:简单的线性规划的非线性应用8 【答案】【解析】试题分析:,故选B.考点:进位制9 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A10【答案】B【解析】解:角的终边经过点P(4,m),且sin=,可得,(m0)解得m=3故选:B【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查11【答案】B【解析】解:若f(x)=|xm|x1|是定义在R上的奇函数,则f(0)=|m|1=0,则m=1或m=1,当m=1时,f(x)=|x1|x1|=0,此时为偶函数,不满足条件,当m=1时,f(x)=|x+1|x1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键注意使用数形结合进行求解12【答案】C【解析】解:令F(x)=,(x0),则F(x)=,f(x)xf(x),F(x)0,F(x)为定义域上的减函数,由不等式x2f()f(x)0,得:,x,x1,故选:C二、填空题13【答案】 【解析】解:直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,由斜截式可得直线l的方程为,故答案为【点评】本题考查直线的斜率公式,直线方程的斜截式14【答案】1【解析】15【答案】0 【解析】解:f(x)=x22x=(x1)21,其图象开口向上,对称抽为:x=1,所以函数f(x)在2,4上单调递增,所以f(x)的最小值为:f(2)=2222=0故答案为:0【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理16【答案】,. 【解析】,而,当且仅当与方向相同时等号成立,故填:,.17【答案】【解析】试题分析:由得, 考点:两角和与差的正切公式18【答案】12【解析】考点:分层抽样三、解答题19【答案】 【解析】解:(1)设等比数列an的公比为q,由a2是a1和a31的等差中项得:2a2=a1+a31,2q=q2,q0,q=2,;(2)n=1时,由b1+2b2+3b3+nbn=an,得b1=a1=1n2时,由b1+2b2+3b3+nbn=an b1+2b2+3b3+(n1)bn1=an1得:,【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题20【答案】 【解析】解:(1)a0,是R上的偶函数f(x)=f(x),即+=,+a2x=+,2x(a)(a)=0,(a)(2x+)=0,2x+0,a0,a=0,解得a=1,或a=1(舍去),a=1;(2)证明:由(1)可知,x0,22x1,f(x)0,f(x)在(0,+)上单调递增;【点评】本题主要考查函数单调性的判断问题函数的单调性判断一般有两种方法,即定义法和求导判断导数正负21【答案】 【解析】解:(I)曲线C1的极坐标方程为2cos2+3=0,即2(cos2sin2)+3=0,可得直角坐标方程:x2y2+3=0曲线C2的参数方程为(t是参数,m是常数),消去参数t可得普通方程:x2ym=0(II)把x=2y+m代入双曲线方程可得:3y2+4my+m2+3=0,由于C1与C2有两个不同的公共点,=16m212(m2+3)0,解得m3或m3,m3或m3【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题 22【答案】 【解析】解:(1)设A=“该运动员两次都命中7环”,则P(A)=0.20.2=0.04(2)依题意在可能取值为:7、8、9、10且P(=7)=0.04,P(=8)=20.20.3+0.32=0.21,P(=9)=20.20.3+20.30.30.32=0.39,P(=10)=20.20.2+20.30.2+20.30.2+0.22=0.36,的分布列为:78910P0.040.210.390.36的期望为E=70.04+80.21+90.39+100.36=9.07【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用23【答案】 【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为=1(0),由题意可得c2=4|+9|=13,解得=1即有双曲线的方程为=1或=124【答案】 【解析】(本题满分为12分)解:(1)由题意知:A=2,T=6,=6得=,f(x)=2sin(x+),函数图象过(,2),sin(+)=1,+,+=,得=A=2,=,=,f(x)=2sin(x+)(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论