高中数学第一章导数及其应用1.3.1函数的单调性与导数练习新人教A版.docx_第1页
高中数学第一章导数及其应用1.3.1函数的单调性与导数练习新人教A版.docx_第2页
高中数学第一章导数及其应用1.3.1函数的单调性与导数练习新人教A版.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3.1 函数的单调性与导数一、选择题1设f(x)ax3bx2cxd(a0),则f(x)为R上增函数的充要条件是()Ab24ac0Bb0,c0Cb0,c0 Db23ac0,f(x)为增函数,f(x)3ax22bxc0恒成立,(2b)243ac4b212ac0,b23ac0,解得x2,故选D.3已知函数yf(x)(xR)上任一点(x0,f(x0)处的切线斜率k(x02)(x01)2,则该函数的单调递减区间为()A1,) B(,2C(,1)和(1,2) D2,)【答案】B【解析】令k0得x02,由导数的几何意义可知,函数的单调减区间为(,24已知函数yxf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,yf(x)的图象大致是()【答案】C【解析】当0x1时xf(x)0f(x)1时xf(x)0,f(x)0,故yf(x)在(1,)上为增函数,因此否定A、B、D故选C.5已知对任意实数x,有f(x)f(x),g(x)g(x),且x0时,f(x)0,g(x)0,则x0,g(x)0 Bf(x)0,g(x)0Cf(x)0 Df(x)0,g(x)0【答案】B【解析】f(x)为奇函数,g(x)为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),x0,g(x)0.6对于R上可导的任意函数f(x),若满足(x1)f(x)0,则必有()Af(0)f(2)2f(1)【答案】C【解析】由(x1)f(x)0得f(x)在1,)上单调递增,在(,1上单调递减或f(x)恒为常数,故f(0)f(2)2f(1)故应选C.二、填空题7函数yln(x2x2)的单调递减区间为_【答案】(,1)【解析】函数yln(x2x2)的定义域为(2,)(,1),令f(x)x2x2,f(x)2x10,得x0;当x(1,0)时,f(x)0.故f(x)在(,1,0,)上单调递增,在1,0上单调递减(2)f(x)x(ex1ax)令g(x)ex1ax,则g(x)exa.若a1,则当x(0,)时,g(x)0,g(x)为增函数,而g(0)0,从而当x0时g(x)0,即f(x)0.当a1,则当x(0,lna)时,g(x)0,g(x)为减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论