




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宝清县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设,为正实数,则=( )A. B. C. D.或【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.2 若f(x)=x22x4lnx,则f(x)0的解集为( )A(0,+)B(1,0)(2,+)C(2,+)D(1,0)3 已知an=(nN*),则在数列an的前30项中最大项和最小项分别是( )Aa1,a30Ba1,a9Ca10,a9Da10,a304 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内处应填( )A11?B12?C13?D14?5 曲线y=x33x2+1在点(1,1)处的切线方程为( )Ay=3x4By=3x+2Cy=4x+3Dy=4x56 已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前10项和为( )A89B76C77D357 如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆在扇形OAB内随机取一点,则此点取自阴影部分的概率是( )A1BCD8 过直线3x2y+3=0与x+y4=0的交点,与直线2x+y1=0平行的直线方程为( )A2x+y5=0B2xy+1=0Cx+2y7=0Dx2y+5=09 已知命题p:22,命题q:x0R,使得x02+2x0+2=0,则下列命题是真命题的是( )ApBpqCpqDpq10执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为( )A4B5C6D7 11设偶函数f(x)在(0,+)上为减函数,且f(2)=0,则不等式0的解集为( )A(2,0)(2,+)B(,2)(0,2)C(,2)(2,+)D(2,0)(0,2)12已知抛物线的焦点为,点是抛物线上的动点,则当的值最小时,的面积为( )A. B.C. D. 【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.二、填空题13设变量x,y满足约束条件,则的最小值为14已知平面上两点M(5,0)和N(5,0),若直线上存在点P使|PM|PN|=6,则称该直线为“单曲型直线”,下列直线中:y=x+1 y=2 y=x y=2x+1是“单曲型直线”的是15阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是16已知x是400和1600的等差中项,则x=17若实数满足,则的最小值为 18数列 an中,a12,an1anc(c为常数),an的前10项和为S10200,则c_三、解答题19已知函数(1)令,讨论的单调区间;(2)若,正实数满足,证明20(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据: 赞同 反对合计男50 150200女30 170 200合计 80320 400()能否有能否有的把握认为对这一问题的看法与性别有关?()从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为,求的分布列和期望参考公式:,21已知函数f(x)的定义域为x|xk,kZ,且对定义域内的任意x,y都有f(xy)=成立,且f(1)=1,当0x2时,f(x)0(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在2,3上的最值22已知函数f(x)=log2(x3),(1)求f(51)f(6)的值;(2)若f(x)0,求x的取值范围23啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(+)+1=r2(r0)()求直线l的普通方程和圆C的直角坐标方程;()若圆C上的点到直线l的最大距离为3,求r值 24(本小题满分12分)已知函数()(1)当时,求函数在上的最大值和最小值;(2)当时,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;宝清县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B.【解析】,故,而事实上,故选B.2 【答案】C【解析】解:由题,f(x)的定义域为(0,+),f(x)=2x2,令2x20,整理得x2x20,解得x2或x1,结合函数的定义域知,f(x)0的解集为(2,+)故选:C3 【答案】C【解析】解:an=1+,该函数在(0,)和(,+)上都是递减的,图象如图,910这个数列的前30项中的最大项和最小项分别是a10,a9故选:C【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题4 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误5 【答案】B【解析】解:点(1,1)在曲线上,y=3x26x,y|x=1=3,即切线斜率为3利用点斜式,切线方程为y+1=3(x1),即y=3x+2故选B【点评】考查导数的几何意义,该题比较容易6 【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2)a2+sin2=2a2=4一般地,当n=2k1(kN*)时,a2k+1=1+cos2a2k1+sin2=a2k1+1,即a2k+1a2k1=1所以数列a2k1是首项为1、公差为1的等差数列,因此a2k1=k当n=2k(kN*)时,a2k+2=(1+cos2)a2k+sin2=2a2k所以数列a2k是首项为2、公比为2的等比数列,因此a2k=2k该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C7 【答案】A【解析】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:,此点取自阴影部分的概率是故选A8 【答案】A【解析】解:联立,得x=1,y=3,交点为(1,3),过直线3x2y+3=0与x+y4=0的交点,与直线2x+y1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=5,直线方程是:2x+y5=0,故选:A9 【答案】D【解析】解:命题p:22是真命题,方程x2+2x+2=0无实根,故命题q:x0R,使得x02+2x0+2=0是假命题,故命题p,pq,pq是假命题,命题pq是真命题,故选:D10【答案】A 解析:模拟执行程序框图,可得S=0,n=0满足条,0k,S=3,n=1满足条件1k,S=7,n=2满足条件2k,S=13,n=3满足条件3k,S=23,n=4满足条件4k,S=41,n=5满足条件5k,S=75,n=6若使输出的结果S不大于50,则输入的整数k不满足条件5k,即k5,则输入的整数k的最大值为4故选:11【答案】B【解析】解:f(x)是偶函数f(x)=f(x)不等式,即也就是xf(x)0当x0时,有f(x)0f(x)在(0,+)上为减函数,且f(2)=0f(x)0即f(x)f(2),得0x2;当x0时,有f(x)0x0,f(x)=f(x)f(2),x2x2综上所述,原不等式的解集为:(,2)(0,2)故选B12【答案】B 【解析】设,则.又设,则,所以,当且仅当,即时,等号成立,此时点,的面积为,故选B.二、填空题13【答案】4 【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键14【答案】 【解析】解:|PM|PN|=6点P在以M、N为焦点的双曲线的右支上,即,(x0)对于,联立,消y得7x218x153=0,=(18)247(153)0,y=x+1是“单曲型直线”对于,联立,消y得x2=,y=2是“单曲型直线”对于,联立,整理得144=0,不成立不是“单曲型直线”对于,联立,消y得20x2+36x+153=0,=3624201530y=2x+1不是“单曲型直线”故符合题意的有故答案为:【点评】本题考查“单曲型直线”的判断,是中档题,解题时要认真审题,注意双曲线定义的合理运用15【答案】3 【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值当x=2时,f(x)=122=3故答案为:3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视16【答案】1000 【解析】解:x是400和1600的等差中项,x=1000故答案为:100017【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小18【答案】【解析】解析:由a12,an1anc,知数列an是以2为首项,公差为c的等差数列,由S10200得102c200,c4.答案:4三、解答题19【答案】(1)当时,函数单调递增区间为,无递减区间,当时,函数单调递增区间为,单调递减区间为;(2)证明见解析.【解析】试题解析:(2)当时,由可得,即,令,则,则在区间上单调递减,在区间上单调递增,所以,所以,又,故,由可知1考点:函数导数与不等式【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.20【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力的分布列为:0123的数学期望为 12分21【答案】 【解析】(1)证明:函数f(x)的定义域为x|xk,kZ,关于原点对称又f(xy)=,所以f(x)=f(1x)1= = = = = =,故函数f(x)奇函数(2)令x=1,y=1,则f(2)=f1(1)= =,令x=1,y=2,则f(3)=f1(2)= = =,f(x2)=,f(x4)=,则函数的周期是4先证明f(x)在2,3上单调递减,先证明当2x3时,f(x)0,设2x3,则0x21,则f(x2)=,即f(x)=0,设2x1x23,则f(x1)0,f(x2)0,f(x2x1)0,则f(x1)f(x2)=,f(x1)f(x2),即函数f(x)在2,3上为减函数,则函数f(x)在2,3上的最大值为f(2)=0,最小值为f(3)=1【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大22【答案】 【解析】解:(1)函数f(x)=log2(x3),f(51)f(6)=log248log23=log216=4;(2)若f(x)0,则0x31,解得:x(3,4【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错23【答案】 【解析】解:()根据直线l的参数方程为(t为参数),消去参数,得x+y=0,直线l的直角坐标方程为x+y=0,圆C的极坐标方程为p2+2psin(+)+1=r2(r0)(x+)2+(y+)2=r2(r0)圆C的直角坐标方程为(x+)2+(y+)2=r2(r0)()圆心C(,),半径为r,(5分)圆心C到直线x+y=0的距离为d=2,又圆C上的点到直线l的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年跨境电商公司员工健康管理及劳动权益保障合同
- 2025年智能农业物联网平台建设与设备租赁合同
- 2025年度智能车展展位租赁与智能营销解决方案服务合同
- 2025年金融科技信息安全解决方案设计与实施合同
- 2025年城市老旧住宅区改造工程房屋修缮补偿协议范本
- 2025医疗美容技术公司股份购买及授权许可协议
- 2025年权威二手手机检测及深度维护服务专项合同
- 2025年跨国英文项目管理及专家顾问服务合同
- 2025年特色咖啡厅转让合同范本:咖啡自助餐厅经营权及装修设备移交协议
- 2025年生态监测与绿色生产技术咨询合同
- 无人机测绘中职教学计划
- 肿瘤二代测序基因检测技术应用与进展
- 上海同济医院管理制度
- 2025年高考北京卷语文真题作文记叙文深度点评与分析
- 小学生队形队列班会课件
- 地中海贫血护理业务查房
- 华科版七年级信息技术《身边信息-用心感知》
- 职业技术学院运动健康指导专业人才培养方案
- T/CIE 165-2023企业级固态硬盘测试规范第1部分:功能测试
- 离婚后小孩学费协议书
- 初中学校学科竞赛策划工作计划
评论
0/150
提交评论