




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
龙安区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A B C D2 已知,若,则( )ABCD【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力3 设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为 A、B、C、 D、4 利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a1)0成立的概率是( )ABCD5 函数是指数函数,则的值是( )A4 B1或3 C3 D16 设xR,则x2的一个必要不充分条件是( )Ax1Bx1Cx3Dx3 7 若函数的图象关于直线对称,且当,时,则等于( )A B C. D8 在ABC中,已知D是AB边上一点,若=2, =,则=( )ABCD9 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A5BCD10在等差数列中,公差,为的前项和.若向量,且,则的最小值为( )A B C D【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力11已知函数f(x)=Asin(x)(A0,0)的部分图象如图所示,EFG是边长为2 的等边三角形,为了得到g(x)=Asinx的图象,只需将f(x)的图象( )A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位D向右平移个长度单位12下列给出的几个关系中:;,正确的有( )个A.个 B.个 C.个 D.个二、填空题13在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是14将曲线向右平移个单位后得到曲线,若与关于轴对称,则的最小值为_.15在棱长为1的正方体ABCDA1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动现有下列命题:若点P总保持PABD1,则动点P的轨迹所在曲线是直线;若点P到点A的距离为,则动点P的轨迹所在曲线是圆;若P满足MAP=MAC1,则动点P的轨迹所在曲线是椭圆;若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝其中真命题是(写出所有真命题的序号)16二项式展开式中,仅有第五项的二项式系数最大,则其常数项为17log3+lg25+lg47(9.8)0=18设变量满足约束条件,则的最小值是,则实数_【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力三、解答题19圆锥底面半径为,高为,其中有一个内接正方体,求这个内接正方体的棱长20某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?21计算:(1)8+()0;(2)lg25+lg2log29log3222已知函数()(1)求的单调区间和极值;(2)求在上的最小值(3)设,若对及有恒成立,求实数的取值范围23已知等差数列an中,a1=1,且a2+2,a3,a42成等比数列(1)求数列an的通项公式;(2)若bn=,求数列bn的前n项和Sn24在直角坐标系xOy中,圆C的参数方程(为参数)以O为极点,x轴的非负半轴为极轴建立极坐标系()求圆C的极坐标方程;()直线l的极坐标方程是(sin+)=3,射线OM:=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长 龙安区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2故答案为:C2 【答案】A【解析】3 【答案】C.【解析】由,得:,即,令,则当时,即在是减函数, ,在是减函数,所以由得,即,故选4 【答案】C【解析】解:由ln(3a1)0得a,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a1)0成立的概率是P=,故选:C5 【答案】C【解析】考点:指数函数的概念6 【答案】A【解析】解:当x2时,x1成立,即x1是x2的必要不充分条件是,x1是x2的既不充分也不必要条件,x3是x2的充分条件,x3是x2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础7 【答案】C【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型首先利用数形结合思想和转化化归思想可得,解得,从而,再次利用数形结合思想和转化化归思想可得关于直线对称,可得,从而8 【答案】A【解析】解:在ABC中,已知D是AB边上一点=2, =,=,=,故选A【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量9 【答案】C【解析】解:双曲线焦点在y轴上,故两条渐近线为 y=x,又已知渐近线为, =,b=2a,故双曲线离心率e=,故选C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键10【答案】A 【解析】11【答案】 A【解析】解:EFG是边长为2的正三角形,三角形的高为,即A=,函数的周期T=2FG=4,即T=4,解得=,即f(x)=Asinx=sin(x),g(x)=sinx,由于f(x)=sin(x)=sin(x),故为了得到g(x)=Asinx的图象,只需将f(x)的图象向左平移个长度单位故选:A【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题12【答案】C【解析】试题分析:由题意得,根据集合之间的关系可知:和是正确的,故选C.考点:集合间的关系.二、填空题13【答案】 【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为: =剩下的凸多面体的体积是1=故答案为:【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力14【答案】【解析】解析:曲线的解析式为,由与关于轴对称知,即对一切恒成立,由得的最小值为6.15【答案】 【解析】解:对于,BD1面AB1C,动点P的轨迹所在曲线是直线B1C,正确;对于,满足到点A的距离为的点集是球,点P应为平面截球体所得截痕,即轨迹所在曲线为圆,正确;对于,满足条件MAP=MAC1 的点P应为以AM为轴,以AC1 为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,错误;对于,P到直线C1D1 的距离,即到点C1的距离与到直线BC的距离比为2:1,动点P的轨迹所在曲线是以C1 为焦点,以直线BC为准线的双曲线,正确;对于,如图建立空间直角坐标系,作PEBC,EFAD,PGCC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2y2=1,P点轨迹所在曲线是双曲线,错误故答案为:【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题16【答案】70 【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为Tr+1=(1)rC8rx82r令82r=0得r=4则其常数项为C84=70故答案为70【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别17【答案】 【解析】解:原式=+lg10021=+221=,故选:【点评】本题考查了对数的运算性质,属于基础题18【答案】【解析】三、解答题19【答案】【解析】试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可试题解析:过圆锥的顶点和正方体底面的一条对角线作圆锥的截面,得圆锥的轴截面,正方体对角面,如图所示设正方体棱长为,则,作于,则,即,即内接正方体棱长为考点:简单组合体的结构特征20【答案】 【解析】解:(1)依题意得:当0x4时,y=10;(2分)当4x18时,y=10+1.5(x4)=1.5x+4当x18时,y=10+1.514+2(x18)=2x5(8分)(9分)(2)x=30,y=2305=55(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题21【答案】 【解析】解:(1)8+()0=21+1(3e)=e(2)lg25+lg2log29log32=12=1(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用22【答案】(1)的单调递增区间为,单调递减区间为,无极大值;(2)时,时,时,;(3).【解析】(2)当,即时,在上递增,;当,即时,在上递减,;当,即时,在上递减,在上递增,(3),由,得,当时,;当时,在上递减,在递增,故,又,当时,对恒成立等价于;又对恒成立,故1考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用.【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.23【答案】 【解析】解:(1)由a2+2,a3,a42成等比数列,=(a2+2)(a42),(1+2d)2=(3+d)(1+3d),d24d+4=0,解得:d=2,an=1+2(n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论