城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数y=ax+1(a0且a1)图象恒过定点( )A(0,1)B(2,1)C(2,0)D(0,2)2 设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(3)的值为( )A2B4C0D43 已知直线与圆交于两点,为直线上任意一点,则的面积为( )A B. C. D. 4 若向量=(3,m),=(2,1),则实数m的值为( )ABC2D65 若P是以F1,F2为焦点的椭圆=1(ab0)上的一点,且=0,tanPF1F2=,则此椭圆的离心率为( )ABCD 6 设复数(是虚数单位),则复数( )A. B. C. D. 【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力7 已知全集,则( )A B C D8 如图框内的输出结果是( )A2401B2500C2601D27049 若是两条不同的直线,是三个不同的平面,则下列为真命题的是( )A若,则B若,则C若,则D若,则10已知函数f(x)=,则=( )ABC9D911命题“若ab,则a8b8”的逆否命题是( )A若ab,则a8b8B若a8b8,则abC若ab,则a8b8D若a8b8,则ab12设m,n表示两条不同的直线,、表示两个不同的平面,则下列命题中不正确的是( )Am,m,则Bmn,m,则nCm,n,则mnDm,=n,则mn二、填空题13已知向量满足,则与的夹角为 . 【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.14在直角坐标系xOy中,已知点A(0,1)和点B(3,4),若点C在AOB的平分线上且|=2,则=15若“xa”是“x22x30”的充分不必要条件,则a的取值范围为16已知实数,满足,目标函数的最大值为4,则_【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力17若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在( )A第一象限 B第二象限 C第三象限 D第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力18已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是三、解答题19如图,在三棱柱ABCA1B1C1中,AA1C1C是边长为4的正方形平面ABC平面AA1C1C,AB=3,BC=5()求证:AA1平面ABC;()求证二面角A1BC1B1的余弦值;()证明:在线段BC1上存在点D,使得ADA1B,并求的值20已知函数y=x+有如下性质:如果常数t0,那么该函数在(0,上是减函数,在,+)上是增函数(1)已知函数f(x)=x+,x1,3,利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=x2a,若对任意x10,1,总存在x20,1,使得h(x2)=g(x1)成立,求实数a的值 21(本小题满分12分)设函数.(1)当时,求不等式的解集;(2)当时,恒成立,求实数的取值范围22设锐角三角形的内角所对的边分别为(1)求角的大小;(2)若,求23(本小题满分10分)已知曲线,直线(为参数).(1)写出曲线的参数方程,直线的普通方程;(2)过曲线上任意一点作与夹角为的直线,交于点,求的最大值与最小值.24已知椭圆+=1(ab0)的离心率为,且a2=2b(1)求椭圆的方程;(2)直线l:xy+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由 城区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2函数f(x)=ax+1的图象必过定点(0,2)故选:D【点评】本题考查了指数函数的性质和a0=1(a0且a1),属于基础题2 【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f(0)=0;再令y=x,则f(x)+f(x)=f(0)=0,所以,f(x)=f(x),所以,函数f(x)为奇函数又f(3)=4,所以,f(3)=f(3)=4,所以,f(0)+f(3)=4故选:B【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题3 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,两平行直线之间的距离为,的面积为,选C4 【答案】A【解析】解:因为向量=(3,m),=(2,1),所以3=2m,解得m=故选:A【点评】本题考查向量共线的充要条件的应用,基本知识的考查5 【答案】A【解析】解:,即PF1F2是P为直角顶点的直角三角形RtPF1F2中,=,设PF2=t,则PF1=2t=2c,又根据椭圆的定义,得2a=PF1+PF2=3t此椭圆的离心率为e=故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题6 【答案】A【解析】7 【答案】A考点:集合交集,并集和补集【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.8 【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+99=2500,故选:B【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题9 【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确故选C考点:空间直线、平面间的位置关系10【答案】A【解析】解:由题意可得f()=2,f(f()=f(2)=32=,故选A11【答案】D【解析】解:根据逆否命题和原命题之间的关系可得命题“若ab,则a8b8”的逆否命题是:若a8b8,则ab故选D【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系比较基础12【答案】D【解析】解:A选项中命题是真命题,m,m,可以推出;B选项中命题是真命题,mn,m可得出n;C选项中命题是真命题,m,n,利用线面垂直的性质得到nm;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行故选D【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理二、填空题13【答案】【解析】14【答案】(,) 【解析】解:,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:又|=2=(,)故答案为:(,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2)及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解15【答案】a1 【解析】解:由x22x30得x3或x1,若“xa”是“x22x30”的充分不必要条件,则a1,故答案为:a1【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键16【答案】【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线经过点时,取得最大值,所以,故17【答案】D【解析】18【答案】 【解析】解:已知为所求;故答案为:【点评】本题主要考查椭圆的标准方程属基础题三、解答题19【答案】 【解析】(I)证明:AA1C1C是正方形,AA1AC又平面ABC平面AA1C1C,平面ABC平面AA1C1C=AC,AA1平面ABC(II)解:由AC=4,BC=5,AB=3AC2+AB2=BC2,ABAC建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2)则,令y1=4,解得x1=0,z1=3,令x2=3,解得y2=4,z2=0,=二面角A1BC1B1的余弦值为(III)设点D的竖坐标为t,(0t4),在平面BCC1B1中作DEBC于E,可得D,=, =(0,3,4),解得t=【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力20【答案】 【解析】解:(1)由已知可以知道,函数f(x)在x1,2上单调递减,在x2,3上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)f(3)所以f(x)max=f(1)=5所以f(x)在x1,3的值域为4,5(2)y=g(x)=2x+1+8设=2x+1,x0,1,13,则y=8,由已知性质得,当1u2,即0x时,g(x)单调递减,所以递减区间为0,;当2u3,即x1时,g(x)单调递增,所以递增区间为,1;由g(0)=3,g()=4,g(1)=,得g(x)的值域为4,3因为h(x)=x2a为减函数,故h(x)12a,2a,x0,1根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a= 21【答案】(1);(2)【解析】试题分析:(1)由于原不等式的解集为;(2)由设,原命题转化为又且考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为,解得;第二小题利用数学结合思想和转化思想,将原命题转化为 ,进而求得:22【答案】(1);(2)【解析】1111(2)根据余弦定理,得,所以.考点:正弦定理与余弦定理23【答案】(1),;(2),.【解析】试题分析:(1)由平方关系和曲线方程写出曲线的参数方程,消去参数作可得直线的普通方程;(2)由曲线的参数方程设曲线上任意一点的坐标,利用点到直线的距离公式求出点直线的距离,利用正弦函数求出,利用辅助角公式进行化简,再由正弦函数的性质求出的最大值与最小值.试题解析:(1)曲线的参数方程为,(为参数),直线的普通方程为.(2)曲线上任意一点到的距离为则,其中为锐角,且,当时,取得最大值,最大值为.当时,取得最小值,最小值为.考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.24【答案】【解析】解:(1)由题意得e=,a2=2b,a2b2=c2,解得a=,b=c=1故椭圆的方程为x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论