




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
峨山彝族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 正方体的内切球与外接球的半径之比为( )ABCD2 双曲线:的渐近线方程和离心率分别是( )ABCD3 某几何体的三视图如图所示,则该几何体的表面积为( )A12+15B13+12C18+12D21+154 向高为H的水瓶中注水,注满为止如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中的( )ABCD5 等于( )A B C D6 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为( )A20,2 B24,4 C25,2 D25,47 已知全集U=0,1,2,3,4,集合A=0,1,3,B=0,1,4,则(UA)B为( )A0,1,2,4B0,1,3,4C2,4D48 ,则( )A B C D9 已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(2015)=( )A2B2C8D810已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D111定义在R上的奇函数f(x)满足f(x+3)=f(x),当0x1时,f(x)=2x,则f (2015)=( )A2B2CD 12函数的零点所在区间为( )A(3,4)B(2,3)C(1,2)D(0,1)二、填空题13在下列给出的命题中,所有正确命题的序号为 函数y=2x3+3x1的图象关于点(0,1)成中心对称;对x,yR若x+y0,则x1或y1;若实数x,y满足x2+y2=1,则的最大值为;若ABC为锐角三角形,则sinAcosB在ABC中,BC=5,G,O分别为ABC的重心和外心,且=5,则ABC的形状是直角三角形14已知数列an中,a1=1,an+1=an+2n,则数列的通项an=15如图,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为cm316已知满足,则的取值范围为_.17设复数z满足z(23i)=6+4i(i为虚数单位),则z的模为18设幂函数的图象经过点,则= 三、解答题19已知函数f(x)=1+(2x2)(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域20(本小题满分12分)设,满足(1)求的值;(2)求的值21(本小题满分12分)已知等差数列的前项和为,且,(1)求的通项公式和前项和;(2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的取值范围22求同时满足下列两个条件的所有复数z:z+是实数,且1z+6;z的实部和虚部都是整数23已知等差数列an,等比数列bn满足:a1=b1=1,a2=b2,2a3b3=1()求数列an,bn的通项公式;()记cn=anbn,求数列cn的前n项和Sn24如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上(1)求证:平面AEC平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小峨山彝族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为: a,所以,正方体的内切球与外接球的半径之比为:故选C2 【答案】D【解析】解:双曲线:的a=1,b=2,c=双曲线的渐近线方程为y=x=2x;离心率e=故选 D3 【答案】C【解析】解:由三视图知几何体为半个圆锥,圆锥的底面圆半径为1,高为2,圆锥的母线长为5,几何体的表面积S=42+45+83=18+12故选:C4 【答案】B【解析】解:如果水瓶形状是圆柱,V=r2h,r不变,V是h的正比例函数,其图象应该是过原点的直线,与已知图象不符故D错;由已知函数图可以看出,随着高度h的增加V也增加,但随h变大,每单位高度的增加,体积V的增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小故A、C错故选:B5 【答案】D【解析】试题分析:原式考点:余弦的两角和公式.6 【答案】C【解析】考点:茎叶图,频率分布直方图7 【答案】A【解析】解:U=0,1,2,3,4,集合A=0,1,3,CUA=2,4,B=0,1,4,(CUA)B=0,1,2,4故选:A【点评】本题考查集合的交、交、补集的混合运算,是基础题解题时要认真审题,仔细解答8 【答案】A【解析】试题分析:,由于为增函数,所以.应为为增函数,所以,故.考点:比较大小9 【答案】B【解析】解:f(x+4)=f(x),f(2015)=f(50441)=f(1),又f(x)在R上是奇函数,f(1)=f(1)=2故选B【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题10【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论11【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(36721)=f(1);又因为函数f(x)是定义R上的奇函数,当0x1时,f(x)=2x,所以f(1)=f(1)=2,即f(2015)=2故选:B【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f(36721)=f(1)12【答案】B【解析】解:函数的定义域为(0,+),易知函数在(0,+)上单调递增,f(2)=log3210,f(3)=log330,函数f(x)的零点一定在区间(2,3),故选:B【点评】本题考查函数的单调性,考查零点存在定理,属于基础题二、填空题13【答案】 :【解析】解:对于函数y=2x33x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于点(0,1)的对称点为(x0,2y0)也满足函数的解析式,则正确;对于对x,yR,若x+y0,对应的是直线y=x以外的点,则x1,或y1,正确;对于若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(2,0)连线的斜率,其最大值为,正确;对于若ABC为锐角三角形,则A,B,AB都是锐角,即AB,即A+B,BA,则cosBcos(A),即cosBsinA,故不正确对于在ABC中,G,O分别为ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则ODBC,GD=AD,=|,由则,即则又BC=5则有由余弦定理可得cosC0,即有C为钝角则三角形ABC为钝角三角形;不正确故答案为:14【答案】2n1 【解析】解:a1=1,an+1=an+2n,a2a1=2,a3a2=22,anan1=2n1,相加得:ana1=2+22+23+2+2n1,an=2n1,故答案为:2n1,15【答案】6 【解析】解:过A作AOBD于O,AO是棱锥的高,所以AO=,所以四棱锥ABB1D1D的体积为V=6故答案为:616【答案】【解析】 考点:简单的线性规划【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1)表示点与原点的距离;(2)表示点与点间的距离;(3)可表示点与点连线的斜率;(4)表示点与点连线的斜率.17【答案】2 【解析】解:复数z满足z(23i)=6+4i(i为虚数单位),z=,|z|=2,故答案为:2【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题18【答案】【解析】试题分析:由题意得考点:幂函数定义三、解答题19【答案】 【解析】解:(1)函数f(x)=1+=,(2)函数的图象如图:(3)函数值域为:1,3)20【答案】(1);(2)【解析】试题分析:(1)由 ,又;(2)由(1)可得试题解析:(1),3分,6分(2)由(1)可得8分,10分12分考点:三角恒等变换21【答案】【解析】【命题意图】本题考查等差数列通项与前项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用22【答案】 【解析】解:设z+=t,则 z2tz+10=01t6,=t2400,解方程得 z=i又z的实部和虚部都是整数,t=2或t=6,故满足条件的复数共4个:z=13i 或 z=3i23【答案】 【解析】解:(I)设等差数列an的公差为d,等比数列bn的公比为q:a1=b1=1,a2=b2,2a3b3=11+d=q,2(1+2d)q2=1,解得或an=1,bn=1;或an=1+2(n1)=2n1,bn=3n1(II)当时,cn=anbn=1,Sn=n当时,cn=anbn=(2n1)3n1,Sn=1+33+532+(2n1)3n1,3Sn=3+332+(2n3)3n1+(2n1)3n,2Sn=1+2(3+32+3n1)(2n1)3n=1(2n1)3n=(22n)3n2,Sn=(n1)3n+1【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题24【答案】 【解析】()证明:四边形ABCD是正方形,ACBD,PD底面ABCD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届湖南邵阳市城区七年级数学第一学期期末检测模拟试题含解析
- 广东省东莞市2026届数学九上期末考试模拟试题含解析
- IE专业知识培训课件
- 个人延期还款的协议书14篇
- 高中《体育与健康》开学第一课课件
- 互联网金融行业现状及前景预测
- 2026届广东省深圳市龙岗区大鹏新区华侨中学数学九年级第一学期期末联考模拟试题含解析
- 邮储银行酒泉市金塔县2025秋招笔试言语理解题专练及答案
- 邮储银行乌兰察布市兴和县2025秋招笔试思维策略题专练及答案
- 邮储银行双鸭山市尖山区2025秋招笔试计算机基础专练及答案
- 消防安全周巡查记录表
- 俱舍论原文内容
- 第三章 护理伦理学基本原则规范和范畴
- 能源化学与能源化工概论-第一章 能源简介
- GB/T 18742.3-2017冷热水用聚丙烯管道系统第3部分:管件
- FZ/T 52058-2021低熔点聚乳酸(LMPLA)/聚乳酸(PLA)复合短纤维
- 2023年华中师范大学研究生入学考试试题汉语言文字专业语言及应用语言学对外汉语教学专业试题
- 2021新教材高中历史第四单元资本主义制度的确立-教学课件-人教版历史纲要下
- 高中生职业生涯规划主题班会课件
- 土方清表方案
- 食品加工厂管理的规章制度(大全)
评论
0/150
提交评论