昌乐县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
昌乐县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
昌乐县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
昌乐县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
昌乐县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

昌乐县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图,已知双曲线=1(a0,b0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为( )Ay=xBy=3xCy=xDy=x2 某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自同一年级的乘坐方式共有( )种.A B C D【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力3 若函数f(x)=2x3+ax2+1存在唯一的零点,则实数a的取值范围为( )A0,+)B0,3C(3,0D(3,+)4 已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于( )A8B1C5D15 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示杂质高杂质低旧设备37121新设备22202根据以上数据,则( )A含杂质的高低与设备改造有关B含杂质的高低与设备改造无关C设备是否改造决定含杂质的高低D以上答案都不对6 在数列an中,a1=3,an+1an+2=2an+1+2an(nN+),则该数列的前2015项的和是( )A7049B7052C14098D141017 已知向量,其中则“”是“”成立的()A充分而不必要条件 B必要而不充分条件 C充要条件 D既不充分又不必要条件8 特称命题“xR,使x2+10”的否定可以写成( )A若xR,则x2+10BxR,x2+10CxR,x2+10DxR,x2+109 过点(0,2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( )ABCD10由直线与曲线所围成的封闭图形的面积为( )AB1CD11若P是以F1,F2为焦点的椭圆=1(ab0)上的一点,且=0,tanPF1F2=,则此椭圆的离心率为( )ABCD 12等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则( )AB2=ACBA+C=2BCB(BA)=A(CA)DB(BA)=C(CA)二、填空题13若正数m、n满足mnmn=3,则点(m,0)到直线xy+n=0的距离最小值是14已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 x1045f(x)1221下列关于f(x)的命题:函数f(x)的极大值点为0,4;函数f(x)在0,2上是减函数;如果当x1,t时,f(x)的最大值是2,那么t的最大值为4;当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个其中正确命题的序号是15设函数,若用表示不超过实数m的最大整数,则函数的值域为16已知点F是抛物线y2=4x的焦点,M,N是该抛物线上两点,|MF|+|NF|=6,M,N,F三点不共线,则MNF的重心到准线距离为17已知函数.表示中的最小值,若函数恰有三个零点,则实数的取值范围是 18ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,则c的值为三、解答题19如图,四面体ABCD中,平面ABC平面BCD,AC=AB,CB=CD,DCB=120,点E在BD上,且CE=DE()求证:ABCE;()若AC=CE,求二面角ACDB的余弦值20某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5的学生颁发荣誉证书,现从A和B两班中各随机抽5名学生进行抽查,其成绩记录如下:A777.599.5B6x8.58.5y由于表格被污损,数据x,y看不清,统计人员只记得xy,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等()若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;()从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望21已知向量=(x, y),=(1,0),且(+)()=0(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,1),当|AM|=|AN|时,求实数m的取值范围22在中已知,试判断的形状.23(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据: 赞同 反对合计男50 150200女30 170 200合计 80320 400()能否有能否有的把握认为对这一问题的看法与性别有关?()从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述发言,求事件“选出的2人中,至少有一名女士”的概率参考公式:,【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力24在三棱锥SABC中,SA平面ABC,ABAC()求证:ABSC;()设D,F分别是AC,SA的中点,点G是ABD的重心,求证:FG平面SBC;()若SA=AB=2,AC=4,求二面角AFDG的余弦值昌乐县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|PF2|=2a,即有m(n1)=2a,由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m1=n,由解得a=1,由|F1F2|=4,则c=2,b=,由双曲线=1的渐近线方程为y=x,即有渐近线方程为y=x故选D【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键2 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有种. 孪生姐妹不乘坐甲车,则有种. 共有24种. 选A.3 【答案】 D【解析】解:令f(x)=2x3+ax2+1=0,易知当x=0时上式不成立;故a=2x,令g(x)=2x,则g(x)=2+=2,故g(x)在(,1)上是增函数,在(1,0)上是减函数,在(0,+)上是增函数;故作g(x)=2x的图象如下,g(1)=21=3,故结合图象可知,a3时,方程a=2x有且只有一个解,即函数f(x)=2x3+ax2+1存在唯一的零点,故选:D4 【答案】B【解析】解:函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,a=20+1=1故选:B5 【答案】 A【解析】独立性检验的应用【专题】计算题;概率与统计【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的【解答】解:由已知数据得到如下22列联表杂质高杂质低合计旧设备37121158新设备22202224合计59323382由公式2=13.11,由于13.116.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的【点评】本题考查独立性检验,考查写出列联表,这是一个基础题6 【答案】B【解析】解:an+1an+2=2an+1+2an(nN+),(an+12)(an2)=2,当n2时,(an2)(an12)=2,可得an+1=an1,因此数列an是周期为2的周期数列a1=3,3a2+2=2a2+23,解得a2=4,S2015=1007(3+4)+3=7052【点评】本题考查了数列的周期性,考查了计算能力,属于中档题7 【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。故答案为:A8 【答案】D【解析】解:命题“xR,使x2+10”是特称命题否定命题为:xR,都有x2+10故选D9 【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx2,即kxy2=0,若过点(0,2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d1,即1,即k230,解得k或k,即且,综上所述,故选:A10【答案】D【解析】由定积分知识可得,故选D。11【答案】A【解析】解:,即PF1F2是P为直角顶点的直角三角形RtPF1F2中,=,设PF2=t,则PF1=2t=2c,又根据椭圆的定义,得2a=PF1+PF2=3t此椭圆的离心率为e=故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题12【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q1,则A=Sn=,B=S2n=,C=S3n=,B(BA)=()=(1qn)(1qn)(1+qn)A(CA)=()=(1qn)(1qn)(1+qn);故B(BA)=A(CA);故选:C【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力二、填空题13【答案】 【解析】解:点(m,0)到直线xy+n=0的距离为d=,mnmn=3,(m1)(n1)=4,(m10,n10),(m1)+(n1)2,m+n6,则d=3故答案为:【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题14【答案】 【解析】解:由导数图象可知,当1x0或2x4时,f(x)0,函数单调递增,当0x2或4x5,f(x)0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以正确;正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x1,t函数f(x)的最大值是4,当2t5,所以t的最大值为5,所以不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)a有几个零点,所以不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)1或1f(2)2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以正确,综上正确的命题序号为故答案为:【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键15【答案】0,1 【解析】解:=+=+,01,+,当0时,0,+1,故y=0;当=时,=0, +=1,故y=1;1时,0,1+,故y=1+1=0;故函数的值域为0,1故答案为:0,1【点评】本题考查了学生的化简运算能力及分类讨论的思想应用16【答案】 【解析】解:F是抛物线y2=4x的焦点,F(1,0),准线方程x=1,设M(x1,y1),N(x2,y2),|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,MNF的重心的横坐标为,MNF的重心到准线距离为故答案为:【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离17【答案】【解析】试题分析:,因为,所以要使恰有三个零点,须满足,解得考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.18【答案】 【解析】解:ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,由正弦定理可得:,解得:a=3,利用余弦定理:a2=b2+c22bccosA,可得:9=4+c22c,即c22c5=0,解得:c=1+,或1(舍去)故答案为:【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题三、解答题19【答案】 【解析】解:()证明:BCD中,CB=CD,BCD=120,CDB=30,EC=DE,DCE=30,BCE=90,ECBC,又平面ABC平面BCD,平面ABC与平面BCD的交线为BC,EC平面ABC,ECAB()解:取BC的中点O,BE中点F,连结OA,OF,AC=AB,AOBC,平面ABC平面BCD,平面ABC平面BCD=BC,AO平面BCD,O是BC中点,F是BE中点,OFBC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,0),C(0,0),D(3,2,0),=(0,1),=(3,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,3),又平面BCD的法向量=(0,0,1),cos=,二面角ACDB的余弦值为【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用本小题对考生的空间想象能力与运算求解能力有较高要求20【答案】 【解析】解:()(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y),x+y=17,=,得(x8)2+(y8)2=1,由解得或,xy,x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,共有个基本事件,P(C)=,即2名学生颁发了荣誉证书的概率为()由题意知X所有可能的取值为0,1,2,3,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,EX=【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用21【答案】 【解析】解:(1)由题意向量=(x, y),=(1,0),且(+)()=0,化简得,Q点的轨迹C的方程为(2)由得(3k2+1)x2+6mkx+3(m21)=0,由于直线与椭圆有两个不同的交点,0,即m23k2+1(i)当k0时,设弦MN的中点为P(xP,yP),xM、xN分别为点M、N的横坐标,则,从而,又|AM|=|AN|,APMN则,即2m=3k2+1,将代入得2mm2,解得0m2,由得,解得,故所求的m的取值范围是(,2)(ii)当k=0时,|AM|=|AN|,APMN,m23k2+1,解得1m1综上,当k0时,m的取值范围是(,2),当k=0时,m的取值范围是(1,1)【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论