




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷鼓楼区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若函数在上是单调函数,则的取值范围是( ) A B C D2 在中,则等于( )A B C或 D23 下列函数中,既是偶函数又在单调递增的函数是( )A B C D4 已知平面向量=(1,2),=(2,m),且,则=( )A(5,10)B(4,8)C(3,6)D(2,4)5 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A. B4C.D6 若向量(1,0,x)与向量(2,1,2)的夹角的余弦值为,则x为( )A0B1C1D27 设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为( )A1BCD8 已知锐角ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=( )A10B9C8D59 已知圆方程为,过点与圆相切的直线方程为( )A B C D10执行如图所示的程序,若输入的,则输出的所有的值的和为( )A243B363C729D1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力11已知f(x)=ax3+bx+1(ab0),若f(2016)=k,则f(2016)=( )AkBkC1kD2k12对一切实数x,不等式x2+a|x|+10恒成立,则实数a的取值范围是( )A(,2)BD上是减函数,那么b+c( )A有最大值B有最大值C有最小值D有最小值二、填空题13已知两个单位向量满足:,向量与的夹角为,则 .14已知定义在R上的奇函数满足,且时,则的值为 15圆心在原点且与直线相切的圆的方程为_ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.16已知f(x),g(x)都是定义在R上的函数,g(x)0,f(x)g(x)f(x)g(x),且f(x)=axg(x)(a0且a1),+=若数列的前n项和大于62,则n的最小值为17设m是实数,若xR时,不等式|xm|x1|1恒成立,则m的取值范围是18如图,在正方体ABCDA1B1C1D1中,P为BD1的中点,则PAC在该正方体各个面上的射影可能是三、解答题19已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和20已知函数f(x)=|xm|,关于x的不等式f(x)3的解集为1,5(1)求实数m的值;(2)已知a,b,cR,且a2b+2c=m,求a2+b2+c2的最小值 21(本小题满分12分)已知函数(). (I)若,求的单调区间; (II)函数,若使得成立,求实数的取值范围.22如图,在四棱锥PABCD中,底面ABCD是正方形,PA底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点(1)证明:EF平面PAC;(2)证明:AFEF23已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标 24已知A、B、C为ABC的三个内角,他们的对边分别为a、b、c,且(1)求A;(2)若,求bc的值,并求ABC的面积 鼓楼区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】试题分析:根据可知,函数图象为开口向上的抛物线,对称轴为,所以若函数在区间上为单调函数,则应满足:或,所以或。故选A。考点:二次函数的图象及性质(单调性)。2 【答案】C【解析】考点:余弦定理3 【答案】C【解析】试题分析:函数为奇函数,不合题意;函数是偶函数,但是在区间上单调递减,不合题意;函数为非奇非偶函数。故选C。考点:1.函数的单调性;2.函数的奇偶性。4 【答案】B【解析】解:排除法:横坐标为2+(6)=4,故选B5 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V23221,故选D.6 【答案】A【解析】解:由题意=,1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点7 【答案】D【解析】解:设函数y=f(x)g(x)=x2lnx,求导数得=当时,y0,函数在上为单调减函数,当时,y0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+)上x2lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值8 【答案】D【解析】解:23cos2A+cos2A=23cos2A+2cos2A1=0,即cos2A=,A为锐角,cosA=,又a=7,c=6,根据余弦定理得:a2=b2+c22bccosA,即49=b2+36b,解得:b=5或b=(舍去),则b=5故选D9 【答案】A【解析】试题分析:圆心,设切线斜率为,则切线方程为,由,所以切线方程为,故选A.考点:直线与圆的位置关系10【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D11【答案】D【解析】解:f(x)=ax3+bx+1(ab0),f(2016)=k,f(2016)=20163a+2016b+1=k,20163a+2016b=k1,f(2016)=20163a2016b+1=(k1)+1=2k故选:D【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用12【答案】B【解析】解:由f(x)在上是减函数,知f(x)=3x2+2bx+c0,x,则15+2b+2c0b+c故选B二、填空题13【答案】【解析】考点:向量的夹角【名师点睛】平面向量数量积的类型及求法(1)求平面向量的数量积有三种方法:一是定义;二是坐标运算公式;三是利用数量积的几何意义(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简14【答案】【解析】1111试题分析:,所以考点:利用函数性质求值15【答案】【解析】由题意,圆的半径等于原点到直线的距离,所以,故圆的方程为.16【答案】1 【解析】解:x为实数,x表示不超过x的最大整数,如图,当x0,1)时,画出函数f(x)=xx的图象,再左右扩展知f(x)为周期函数结合图象得到函数f(x)=xx的最小正周期是1故答案为:1【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用17【答案】0,2 【解析】解:|xm|x1|(xm)(x1)|=|m1|,故由不等式|xm|x1|1恒成立,可得|m1|1,1m11,求得0m2,故答案为:0,2【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题18【答案】 【解析】解:由所给的正方体知,PAC在该正方体上下面上的射影是,PAC在该正方体左右面上的射影是,PAC在该正方体前后面上的射影是故答案为:三、解答题19【答案】 【解析】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设Tr+1为常数项,则:Tr+1=C9r=C9r2r,由r=0,得r=3,常数项为:C9323=672;(2)令x=1,得(1+2)9=39【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题20【答案】 【解析】解:(1)|xm|33xm3m3xm+3,由题意得,解得m=2;(2)由(1)可得a2b+2c=2,由柯西不等式可得(a2+b2+c2)12+(2)2+22(a2b+2c)2=4,a2+b2+c2当且仅当,即a=,b=,c=时等号成立,a2+b2+c2的最小值为【点评】本题主要考查绝对值三角不等式、柯西不等式的应用,属于基础题 21【答案】【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力请22【答案】 【解析】(1)证明:如图,点E,F分别为CD,PD的中点,EFPCPC平面PAC,EF平面PAC,EF平面PAC(2)证明:PA平面ABCD,CD平面ABCD,又ABCD是矩形,CDAD,PAAD=A,CD平面PADAF平面PAD,AFCDPA=AD,点F是PD的中点,AFPD又CDPD=D,AF平面PDCEF平面PDC,AFEF【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题23【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,1分c=ea=,故b=,4分所以,椭圆E的方程为,即x2+3y2=56分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k25=0;7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=,x1x2=;8分=(x1m,y1)=(x1m,k(x1+1),=(x2m,y2)=(x2m,k(x2+1);=(k2+1)x1x2+(k2m)(x1+x2)+k2+m2=m2+2m,要使上式与k无关,则有6m+14=0,解得m=;存在点M(,0)满足题意13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题24【答案】【解析】解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城管招聘面试题及答案
- 汽车肇事测试题及答案
- ARDS考试题及答案
- 湖北省荆州市沙市区沙市中学2026届化学高三第一学期期末达标测试试题含解析
- 经验法则面试题及答案
- 好评制度面试题及答案
- 磨工技师试题及答案
- 任现职期间工作总结
- 认知障碍老人护理全解析
- 家电公司客户分类管理规章
- 风电场危险源辨识、风险评价和风险控制清单
- 儿童血压测量课件
- 医疗AI算法揭秘如何构建高效的疾病预测模型
- 电商外包客服合同协议
- 糖尿病性黄斑水肿护理查房
- 《铁路建设项目安全穿透式管理实施指南》知识培训
- 企业研究院管理制度
- 工业管道安全评估方法-全面剖析
- 施工现场排水方案
- 居家养老护理员技能培训计划
- 《国内外绩效考核指标体系研究现状文献综述》4200字
评论
0/150
提交评论