松山区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
松山区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
松山区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
松山区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
松山区高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

松山区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若动点分别在直线: 和:上移动,则中点所在直线方程为( )A B C D 2 若直线:圆:交于两点,则弦长的最小值为( )A B C D3 函数f(x)=2x的零点个数为( )A0B1C2D34 已知实数x,y满足有不等式组,且z=2x+y的最大值是最小值的2倍,则实数a的值是( )A2BCD5 直径为6的球的表面积和体积分别是( )A B C D6 独立性检验中,假设H0:变量X与变量Y没有关系则在H0成立的情况下,估算概率P(K26.635)0.01表示的意义是( )A变量X与变量Y有关系的概率为1%B变量X与变量Y没有关系的概率为99%C变量X与变量Y有关系的概率为99%D变量X与变量Y没有关系的概率为99.9%7 双曲线的左右焦点分别为,过的直线与双曲线的右支交于两点,若是以为直角顶点的等腰直角三角形,则( )A B C D8 设集合M=x|x1,N=x|xk,若MN,则k的取值范围是( )A(,1B1,+)C(1,+)D(,1)9 函数有两个不同的零点,则实数的取值范围是( )A B C D10设集合( )ABCD 11若ab0,则下列不等式不成立是( )ABC|a|b|Da2b212已知集合M=0,1,2,则下列关系式正确的是( )A0MB0MC0MD0M二、填空题13如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是14某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .15已知函数的一条对称轴方程为,则函数的最大值为_【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想16已知关于的不等式的解集为,则关于的不等式的解集为_.17已知命题p:实数m满足m2+12a27am(a0),命题q:实数m满足方程+=1表示的焦点在y轴上的椭圆,且p是q的充分不必要条件,a的取值范围为18不等式的解为三、解答题19已知a,b,c分别为ABC三个内角A,B,C的对边,且满足2bcosC=2ac()求B; ()若ABC的面积为,b=2求a,c的值20已知函数f(x)=(ax2+x1)ex,其中e是自然对数的底数,aR()若a=0,求曲线f(x)在点(1,f(1)处的切线方程;()若,求f(x)的单调区间;()若a=1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围 21已知函数f(x)=xalnx(aR)(1)当a=2时,求曲线y=f(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值22已知函数f(x)=sin2xsin+cos2xcos+sin()(0),其图象过点(,)()求函数f(x)在0,上的单调递减区间;()若x0(,),sinx0=,求f(x0)的值23(本小题满分10分)选修45:不等式选讲已知函数,()若当时,恒成立,求实数的取值;()当时,求证: 24已知函数.(1)当函数在点处的切线方程为,求函数的解析式;(2)在(1)的条件下,若是函数的零点,且,求的值;(3)当时,函数有两个零点,且,求证:松山区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】【解析】考点:直线方程2 【答案】【解析】试题分析:直线,直线过定点,解得定点,当点(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R是圆的半径,d是圆心到直线的距离.1111 3 【答案】C【解析】解:易知函数的定义域为x|x1,0,函数在(,1)和(1,+)上都是增函数,又0,f(0)=1(2)=30,故函数在区间(4,0)上有一零点;又f(2)=44=0,函数在(1,+)上有一零点0,综上可得函数有两个零点故选:C【点评】本题考查函数零点的判断解题关键是掌握函数零点的判断方法利用函数单调性确定在相应区间的零点的唯一性属于中档题4 【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=2x+z,由图可知zmax=21+1=3,zmin=2a+a=3a,由6a=3,得a=故选:B【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题5 【答案】D【解析】考点:球的表面积和体积6 【答案】C【解析】解:概率P(K26.635)0.01,两个变量有关系的可信度是10.01=99%,即两个变量有关系的概率是99%,故选C【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题7 【答案】C【解析】试题分析:设,则,因为,所以,解得,所以,在直角三角形中,由勾股定理得,因为,所以,所以.考点:直线与圆锥曲线位置关系【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方.111.Com8 【答案】B【解析】解:M=x|x1,N=x|xk,若MN,则k1k的取值范围是1,+)故选:B【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题9 【答案】B【解析】试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B. (1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程零点个数的常用方法:直接法:可利用判别式的正负直接判定一元二次方程根的个数;转化法:函数零点个数就是方程根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;数形结合法:一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.本题的解答就利用了方法.10【答案】B【解析】解:集合A中的不等式,当x0时,解得:x;当x0时,解得:x,集合B中的解集为x,则AB=(,+)故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键11【答案】A【解析】解:ab0,ab0,|a|b|,a2b2,即,可知:B,C,D都正确,因此A不正确故选:A【点评】本题考查了不等式的基本性质,属于基础题12【答案】C【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;对于C,0是集合中的一个元素,表述正确对于D,是元素与集合的关系,错用集合的关系,所以不正确故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用二、填空题13【答案】甲 【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是= (8790)2+(8990)2+(9090)2+(9190)2+(9390)2=4;乙的平均数是=(78+88+89+96+99)=90,方差是= (7890)2+(8890)2+(8990)2+(9690)2+(9990)2=53.2;,成绩较为稳定的是甲【解法二】根据茎叶图中的数据知,甲的5个数据分布在8793之间,分布相对集中些,方差小些;乙的5个数据分布在7899之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些故答案为:甲【点评】本题考查了平均数与方差的计算与应用问题,是基础题目14【答案】【解析】考点:分层抽样方法15【答案】1【解析】16【答案】【解析】考点:一元二次不等式的解法.17【答案】, 【解析】解:由m27am+12a20(a0),则3am4a即命题p:3am4a,实数m满足方程+=1表示的焦点在y轴上的椭圆,则,解得1m2,若p是q的充分不必要条件,则,解得,故答案为,【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p,q的等价条件是解决本题的关键18【答案】x|x1或x0 【解析】解:即即x(x1)0解得x1或x0故答案为x|x1或x0【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法注意不等式的解以解集形式写出三、解答题19【答案】 【解析】解:()已知等式2bcosC=2ac,利用正弦定理化简得:2sinBcosC=2sinAsinC=2sin(B+C)sinC=2sinBcosC+2cosBsinCsinC,整理得:2cosBsinCsinC=0,sinC0,cosB=,则B=60;()ABC的面积为=acsinB=ac,解得:ac=4,又b=2,由余弦定理可得:22=a2+c2ac=(a+c)23ac=(a+c)212,解得:a+c=4,联立解得:a=c=220【答案】 【解析】解:()a=0,f(x)=(x1)ex,f(x)=ex+(x1)ex=xex,曲线f(x)在点(1,f(1)处的切线斜率为k=f(1)=e又f(1)=0,所求切线方程为y=e(x1),即exy4=0()f(x)=(2ax+1)ex+(ax2+x1)ex=ax2+(2a+1)xex=x(ax+2a+1)ex,若a=,f(x)=x2ex0,f(x)的单调递减区间为(,+),若a,当x或x0时,f(x)0;当x0时,f(x)0f(x)的单调递减区间为(,0,+);单调递增区间为,0()当a=1时,由()知,f(x)=(x2+x1)ex在(,1)上单调递减,在1,0单调递增,在0,+)上单调递减,f(x)在x=1处取得极小值f(1)=,在x=0处取得极大值f(0)=1,由,得g(x)=2x2+2x当x1或x0时,g(x)0;当1x0时,g(x)0g(x)在(,1上单调递增,在1,0单调递减,在0,+)上单调递增故g(x)在x=1处取得极大值,在x=0处取得极小值g(0)=m,数f(x)与函数g(x)的图象仅有1个公共点,g(1)f(1)或g(0)f(0),即.【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题21【答案】 【解析】解:函数f(x)的定义域为(0,+),(1)当a=2时,f(x)=x2lnx,因而f(1)=1,f(1)=1,所以曲线y=f(x)在点A(1,f(1)处的切线方程为y1=(x1),即x+y2=0(2)由,x0知:当a0时,f(x)0,函数f(x)为(0,+)上的增函数,函数f(x)无极值;当a0时,由f(x)=0,解得x=a又当x(0,a)时,f(x)0,当x(a,+)时,f(x)0从而函数f(x)在x=a处取得极小值,且极小值为f(a)=aalna,无极大值综上,当a0时,函数f(x)无极值;当a0时,函数f(x)在x=a处取得极小值aalna,无极大值22【答案】 【解析】(本小题满分12分)解:()f(x)=+=+=)由f(x)图象过点()知:所以:=所以f(x)=令(kZ)即:所以:函数f(x)在0,上的单调区间为:()因为x0(,2),则:2x0(,2)则: =sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型23【答案】【解析】【解析】()得,由题意得,故,所以 5分(), 10分24【答案】(1);(2);(3)证明见解析.【解析】试题解析: (1),所以,函数的解析式为;(2),因为函数的定义域为,令或,当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论