



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宜春中学数学学科2-3册笫一章排列组合的综合应用3、4导学案 编号:59-60编写:丁红平 审核:高二数学理科备课组学习目标:1.进一步理解和应用分步计数原理和分类计数原理;2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 ;3.学会应用数学思想和方法解决排列组合问题。.学习重点:排列组合在其他一些方面的应用学习难点:排列组合在其他一些方面的应用学习过程:1、 预习导航,要点指津(约3分钟)引例1:交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式.1.从6名运动员中选出4人参加4100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集=6人中任取4人参赛的排列,A=甲跑第一棒的排列,B=乙跑第四棒的排列,根据求集合元素个数的公式得参赛方法共有:种.2. 男运动员6名,女运动员4名,其中男女队长各1人,选派5人外出比赛,在下列情形下各有多少种选派方法? (1)队长至少有1人参加;(2)既要有队长,又要有女运动员 解:(1)设A选派5人有男队长参加的,B选派5人有女队长参加的,则原题即求n(AB), 而n(AB)=n(A)+n(B)-n(AB). n(A)=n(B), n(AB)=, 故n(AB)=. 另解:设A选派5人有1个队长参加的,B选派5人有2个队长参加的,则原题即求n(AB), n(A)=, n(B)=, n(AB)=n()=0. 因此n(AB)=n(A)+n(B)=+196 说明:AB即选派5人既要有1个队长参加又要有2个队长参加这件事,这是不可能事件 (2)设A选派5人有队长参加的,B选派5人有女运动员参加的,则原题即求n(AB), 又即有191种选派方法 说明:即选派5人,既无队长又无女运动员参加 从以上例题我们可以看出,用集合与对应思想分析处理排列组合问题,实质上就是将同一问题中满足不同限制条件的元素的排列或组合的全体与不同的集合之间建立相应的对应关系,而将各限制条件之间的关系转化为集合与集合之间的运算关系,通过计算集合的元素个数来计算排列或组合的个数,这有助于将带有多个附加条件的排列或组合问题分解为只有1个或简单几个附加条件的排列或组合问题来处理,这可大大简化复杂的分类过程,从而降低了问题的难度例2、(1)以正方体的顶点为顶点的四面体共有( )A、70种 B、64种 C、58种 D、52种解析:正方体8个顶点从中每次取四点,理论上可构成四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有个.(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有( )A、150种 B、147种 C、144种 D、141种解析:10个点中任取4个点共有种,其中四点共面的有三种情况:在四面体的四个面上,每面内四点共面的情况为,四个面共有个;过空间四边形各边中点的平行四边形共3个;过棱上三点与对棱中点的三角形共6个.所以四点不共面的情况的种数是种.(3)正方体8个顶点可连成多少队异面直线?解析:因为四面体中仅有3对异面直线,可将问题分解成正方体的8个顶点可构成多少个不同的四面体,从正方体8个顶点中任取四个顶点构成的四面体有个,所以8个顶点可连成的异面直线有358=174对.二、自主探索,独立思考(约10分钟)例1、小明家住二层,他每次回家上楼梯时都是一步迈两级或三级台阶。已知相邻楼层之间有16级台阶,那么小明从一层到二层共有多少种不同的走法?【解析】:插空法解题:考虑走3级台阶的次数: 1)有0次走3级台阶(即全走2级),那么有1种走法; 2)有1次走三级台阶。(不可能完成任务); 3)有两次走3级台阶,则有5次走2级台阶:(a)两次三级台阶挨着时:相当于把这两个挨着的三级台阶放到5个两级台阶形成的空中,有 种(b)两次三级不挨着时:相当于把这两个不挨着的三级台阶放到5个两级台阶形成的空中,有种走法。4)有3次(不可能)5)有4次走3级台阶,则有2次走两级台阶,互换角色,想成把两个2级台阶放到3级台阶形成得空中,同(3)考虑挨着和不挨着两种情况有种走法;6)有5次(不可能) 故总共有:1+6+15+15=37种。例2.如果从数1,2,14中,按从小到大的顺序取出,使同时满足与,那么所有符合上述要求的不同取法共有多少种? 解:设S=1,2,14,T=1,2,10; P=(a1,a2,a3)|a1,a2,a3S, a2-a13, a3-a23 Q=(b1,b2,b3)|b1,b2,b3T, b1b2b3, f: (a1, a2,a3)(b1,b2,b3),其中b1=a1,b2=a2-2, b3=a3-4. 易证f是P和Q之间的一个一一对应,所以题目所求的取法种数恰好等于从T中任意取出三个不同数的取法种数,共120种 例3.甲、乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,直到有一方队员全被淘汰为止,另一方获胜,形成种比赛过程,那么所有可能出现的比赛过程共有多少种? 解:设甲队队员为al,a2,a7,乙队队员为b1,b2,,b7,下标表示事先安排好的出场顺序,若以依次被淘汰的队员为顺序,比赛过程可类比为这14个字母互相穿插的一个排列,最后是胜队中获胜队员和可能未参赛的队员如a1a2b1b2a3b3b4b5a4b6b7a5a6a7. 所表示为14个位置中取7个位置安排甲队队员,其余位置安排乙队队员,故比赛过程的总数为 3432. 例4.(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点有多少个?解析:因为圆的一个内接四边形的两条对角线相交于圆内一点,一个圆的内接四边形就对应着两条弦相交于圆内的一个交点,于是问题就转化为圆周上的10个点可以确定多少个不同的四边形,显然有个,所以圆周上有10点,以这些点为端点的弦相交于圆内的交点有个.(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从到的最短路径有多少种?AB解析:可将图中矩形的一边叫一小段,从到最短路线必须走7小段,其中:向东4段,向北3段;而且前一段的尾接后一段的首,所以只要确定向东走过4段的走法,便能确定路径,因此不同走法有种.例5. 平面上有相异的11个点,每两点连成一条直线,共得43条不同的直线。(1)这11个点中有无三点或三个以上的点共线?若有共线,情形怎样?(2)这11个点构成多少个三角形?解:(1)设若有x条三点共线,y条四点共线,z条五点共线,于是有: C112x(C321)y(C421)z(C521)43即 23-2x-5y-9z-=0这方程的解只可能是:x=6,y=z=0或x=1,y=2,z=0.由此可知,这11个点中有6条三点共线或一条三点共和二条四点共线的情形。(2)由上可知这11个点构成三角形个数的情形有C1136C33159或三、小组合作探究,议疑解惑(约5分钟)各学习小组将上面自主探索的结论、解题方法、知识技巧进行讨论,交流,议疑解惑。四、展示你的收获(约8分钟)由各学习小组派出代表利用多媒体或演板或口头叙述等形式展示个人或小组合作探究的结论、解题方法、知识技巧。(即学习成果)五、重、难、疑点评析(约5分钟)由教师归纳总结点评6、 达标检测(约8分钟)1.某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?2.四面体的一个顶点是A,从其它顶点和各棱中点中取3个点,使他们和点A在同一个平面上,则共有多少种不同的取法?A1A2A3A4A5A6A8A103.空间十个点A1,A2,A3,A10,其中A1,A2A5在同一平面内,此外再无三点共线四点共面,以这些点为顶点,一共可以构成几个四面体?小结:在排列或组合问题中“含”与“不含”的问题,经常先把所有元素进行排列或组合,然后再去掉含有不能含的元素的取法数,这种方法叫排除法。4.平面上4条平行直线与另外5条平行直线互相垂直,则它们构成的矩形共有_个 简析:按构成矩形的过程可分为如下两步:第一步先在4条平行线中任取两条,有种取法;第二步再在5条平行线中任取两条,有种取法这样取出的四条直线构成一个矩形,据乘法原理,构成的矩形共有60个 5.在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是多少? 解:依题意,共线的三点组可分为三类:两端点皆为顶点的共线三点组共有(个);两端点皆为面的中心的共线三点组共有(个);两端点皆为各棱中点的共线三点组共有(个) 所以总共有28+3+1849个 6.25人排成55方队,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?解:将这个问题退化成9人排成33方队,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从33方队中选3人的方法有_种。再从55方队选出33方队便可解决问题从55方队中选取3行3列有_选法.所以从55方队选不在同一行也不在同一列的3人有_选法。7. 已知直线(是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有_ 条 【解析】: 圆上的整点有: 共 12 个。 其中关于原点对称的有4 条 不满则条件 切线有 ,其中平行于坐标轴的有14条 不满则条件 66-4+12-14=60 答案:608.欲登上第10级楼梯,如果规定每步只能跨上一级或两级,则不同的走法共有( )(A)34种(B)55种(C)89种(D)144种 答案: (C)9.小于50000且含有两个5,而其它数字不重复的五位数有( B )个。 A. B. C. D.七、课后练习1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙 型电视机各一台,则不同的取法共有 ( )A、140种 B、80种 C、70种 D、35种解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有种,选.解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有台,选.2.9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?解析:先取男女运动员各2名,有种,这四名运动员混和双打练习有中排法,故共有种.3.某种产品有4只次品和6只正品(每只产品均可区分)每次取一只测试,直到4只次品全部测出为止求第4只次品在第五次被发现的不同情形有多少种? 解:先考虑第五次测试的产品有4种情况,在前四次测试中包含其余的3只次品和1只正品,它们排列的方法数是6。依据乘法原理得所求的不同情形有46576种 有些排列组合问题元素多,取出的情况也有多种,对于这类问题常用的处理方法是:可按结果要求,分成不相容的几类情况分别计算,最后计算总和4.6人带10瓶汽水参加春游,每人至少带1瓶汽水,有多少种不同的带法? 解:将问题转化成把10个相同的球放到6个不同的盒子里,每个盒子里至少放1个球,有多少种不同的放法? 即把排成一行的10个0分成6份的方法数,这样用5块闸板插在9个间隔中,共有126种 即原问题中有126种不同带法 5.在100名选手之间进行单循环淘汰赛(即一场比赛失败要退出比赛),最后产生一名冠军,问要举行几场?分析:要产生一名冠军,需淘汰掉冠军以外的所有其它选手,即要淘汰99名选手,要淘汰一名选手,必须进行一场比赛;反之,每比赛一场恰淘汰一名选手,两者之间一一对应,故立即可得比赛场次99次。 6.5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?解析:首先可让5位姐姐站成一圈,属圆排列有种,然后在让插入其间,每位均可插入其姐姐的左边和右边,有2种方式,故不同的安排方式种不同站法.说明:从个不同元素中取出个元素作圆形排列共有种不同排法7. 某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )种 A16种 B36种 C42种 D60种【解析】:按条件项目可分配为与的结构, 故选D;8.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案有多少种?答案: 9. 有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A、1260种 B、2025种 C、2520种 D、5040种【解析】:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有种,选.10.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?解析:从5个球中取出2个与盒子对号有种,还剩下3个球与3个盒子序号不能对应,利用枚举法分析,如果剩下3,4,5号球与3,4,5号盒子时,3号球不能装入3号盒子,当3号球装入4号盒子时,4,5号球只有1种装法,3号球装入5号盒子时,4,5号球也只有1种装法,所以剩下三球只有2种装法,因此总共装法数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版健身器材店承包经营协议
- 2025版商用空调设备租赁及远程监控服务合同
- 二零二五年度房地产项目品牌形象设计与传播服务合同
- 2025版城市安全防控合作合同
- 二零二五年度工业设备安装工程合同样本
- 二零二五年白酒企业并购重组合同
- 2025版股权激励与知识产权保护协议
- 2025版电商平台跨境电商销售合同协议
- 二零二五年度调味品产业链上下游合作协议
- 二零二五年度海上船舶拖带合同规范
- 儿科常见疾病双向转诊指南
- 中国传媒大学-电视播音员主持人形象设计与造型(第2版)-课件
- 装表接电课件(PPT 86页)
- 脑卒中二级预防的指南
- 中铁XXXX局城轨道交通工程劳务分包指导价2017版
- 德国申克振动筛
- 常用危险化学品储存禁忌物配存表
- 钻机电气控制系统操作手册
- 现浇剪力墙结构模板安装与拆除技术交底
- 电力服务收费项目及标准
- 最新农贸综合市场项目可行性报告
评论
0/150
提交评论